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Abstract 

The time-average Markov Decisiou Procesncn with fiuitc state 
and action spaces are considered. Several definitionn of v a r i a l d -  
ity are introduced aid  coinparetl. I t  in nliown that a ntatioii- 
ary policy niaxiinizcn oue of these criteria, iiaincly, the cxpcctlcd 
long-run average variability. Furtlicriuorc, ail algoritllul is given 
wliicli prodiiccs such an optiuial statiouary policy. 

1 Introduction 

We consider a discrete-time Markov Decision Process(MDP) with fi- 
nite state space and fmite action space. Denote n,, for tlie reward 
obtained at epoch nl. This paper considers the problerll of Jiiirling a 
policy U that maximizes 

for some fued and given initial state (. The variability function h( ., .) 
compares at epoch m the current reward with the average reward over 
an interval that includes m. If h(z,y)  = (z - y)?, then .(U) inay 
be interpreted as the expected time-average variance. If h(z ,y)  = 
z - X(z - Y ) ~  for some X > 0, then maximizing .(U) would correspond 
to finding a policy U that has high expected average reward but low 
expected average variance. 

Under mild continuity conditions on tlie variability futrction, it 
shall be shown that there exists a stationary policy that maximizes 
.(U). Moreover, this policy can be located by the following four-step 
procedure: 1) The state space is decomposed into "strongly conunu- 
nicating classes" and a set of transient states; 2)  For each strongly 
communicating class, a mathematical prograin with linear constraints 
and noillinear objective function is solved; 3) An average reward MDP 
problem is solved where there is one state for every strongly C O I ~ I I I ~ I -  

iucating class; 4) Lastly, an optimal stationary policy is fotnied by 
combining tlie optimal solutions in step 2 with the optimal policy in 
step 3. 

This paper is organized as follows. The notation is given in Sec- 
tion 2. In Section 3 several notions of variability are introduced and 
compared. The problem of maxinuzing .(U) over all policies is inves- 
tigated in Section 4. 

2 Notation 
Let S and A denote the r i t e  state and action space, respectively. 
The underlying sample space for the MDP is fl := ((21, aI,zt ,  a2,. . .) : 
2, E S , a, E A for all n = 1 , 2 , .  . .}. The sample space R is equipped 

with the o-algebra F generated by the random variables {XI, AI, X z ,  

z ,y  E S , a E d denote the law of motion for MDP, 
f denote a stationary policy and g denote a pure or nonrandomized 
policy. Let C and Cs denote the class of all policies and stationary 
policies, respectively. 

Under any stationary policy f, the state process {X,} is a homoge- 
neous Markov chain with transition matrix P(f). A transition matrix 
P(f) is said to be unichain if it has at most one recurrent class plus a 
(possibly empty) set of transient states. In this case, z(f) denotes the 
unique equlibrium vector associated with P(f). 

For each z E S and a E A define the random variables denoting 
the average state-action frequencies through epoch n as 

A t , .  . .}. 
Let 
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where 1{A} is the indicator function of set A. Let CO denote the class 
of all policies U such that {Z,(z,o)} converge8 Pu-ahost  eurely(Pu- 
a.s.) for a11 z E S and a E A .  Let C1 denote the class of all policies 

such that {Ein[Zn(z,a)]} converees for all z and a [see e.g. [SI). 

3 Notions of Variability 
order to compare .(U) with the different notions of variability in- 

troduced by other researchers, denote, 

for the long-run averageexpected reward where Rm := r(Xm, A,). Let 
h ( . ,  .) be a continuous real-valued function delined on A x R, where 
A := {r(z,a) : z E S , a  E A }  and R is the set of real numbers. 
Define the average expected variability as 

. n  

q ( u )  := l h d :  c Eu[h(Rm,r$(u))]. 
",=l 

Note that if h(z,y)  = (z - y)', then ul(u) = var(u) for a11 U E Cl, 
where 

- n  
1 -  

var(ii) := liin - E1l[(Rm - r$(u))']. 
n-tw ' 1  m=l 

I f h ( z , y ) =  z - X ( z - y ) *  t l ienvl(u)=~(u)-Xvar(u)foral luEC1,  
which corresponds to the criterion considered by Filar et a1 [4] and 
Sobel[7]. 

As an alternative definition to q ( u ) ,  define 

Proposition 1 I f u  E C1, then 

%(U) = Vl(U) = Ch[r(z,a),Cr(z,a)z=0(u)lz20(u), (1) 
2.0 Z.0 

where zm4(u) := lim,,-,m EU[Zn(z,a)]. Furthermore, ifu i s  such that 
{Pu(X, = z, A, = a); m = 1,2,. . .} convergesfor all z E S , a E d , 
then 

Ul(U) = uz(u) = v3(u). 

Also consider, 
. n  

1 "  1 "  Vz :=liminf- h(Rmr- Rm). 
n-m n m = l  m=l 

With this notation, the variability criterion .(U) of the Introduction 
becomes .(U) = E,[Vz]. 
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Proposition 2 Suppose II E Co. Then 

= V, = C h I r ( r , a ) , C t ( 2 , a ) ~ ( z , a ) j ~ ( r , a )  (2) 
2.0 =,a 

holds Pu-cr.s. Consequently E,[Vl] = Eu[V2] = .(U) for all U E Co. 

Proposition 3 Let f E Cs and let R1(f), . . . , R,q(f) be the recurrent 
classes induced by P(f). Denote (xi(f)  : z E R'(f)) for the equilib- 
rium probability vecter associated with class i, i = 1, . . . , q. Further 
denote 

tli = r(z,a)rf(f)fzfl 
2 9 0  

and T := min{m : m 2 1, X,,, E UE1 Ri(f)}. Then 

rl a 

i=l 2 9 0  i=l 
ui(f) = cpr(& E R ' ( f ) ) c h [ r ( z , a ) , C P r ( X ,  E R'(f))$i] 

xL(f)fzfl t (3) 

~ ( f )  = P f ( X ,  E ~ ' ( f ) )  C h [ r ( z ,  a), +i;~xd(f)fza. (4) 
i=l 280 

Proposition 4 Suppose h(z,y) = r - X ( ~ - y ) ~  for some X > 0. Then, 
.(U) 2 vl(u) for all U E Co. 

4 Optimization Results 

To construct an optimal policy f E Cs, f is t  the state space S is parti- 
tioned into strongly communicating classes C', C2,. . . , CP and a set 
of transient states 7 (see e.g.[l], [GI) so that Pu(+i) = 1, where 

:= {X, E C' almost always}. A set of states C is said to be a 
strongly communicating class i) if C is a recurrent class for some sta- 
tionary policy; ii) C is not a proper subset of some set V for which (i) 
holds true. 

Next the MDP is restricted to each of the strongly communicating 
classes. Each restricted MDP corresponds to a mathenlatical program 
that involves maximizing a nonlinear function over a rimple polytope. 
Based on the optimnl values of the restricted MDPs, an aggregated 
MDP is constructed. A n  optimal stationary policy for the original 
problem is then obtained by combining the optimal policy for the 
aggregated MDP with the optimal solutions for the restricted MDPs. 

4.1 The Restricted MDP 
The restricted MDP, MDP-i is obtained for each i = 1,. . . , p  by 
considering the set C' as the state space and for z E Ci the set 
F, = {a E A : Pzay = 0 for all y # C'} as the state dependent action 
space. 

For a fixed MDP-i and a fixed initial state ( E C' the correspond- 
ing expected average variability for MDP-i is given by 

For each MDP-i, consider the following mathematical program with 
decirion variable4 {x.,, : z E C', o E &}: 
P r o g r a m  0' 

Ti:= ma= h[r(z,o), r(z,o)r.o]z~o 
ci cio€F. 

8.t. (&U - P.O,)Z,~ = 0, Vy E C' 

220 2 0. 

Theorem 1 For each i = 1,. . . ,p, and for all policies U E C the 
following hol&: 

An algorithm similar to the one given in [5] constructs a stationary 
policy f for MDP-I. 

Theorem 2 'The stationary policy fi is optimal for MDP-i, for all 
initial states ( E C'. Moreover, vi(f') = Ti for all ( E C'. 

4.2 The Aggregated MDP 
In the aggregated MDP, there is one state corresponding to each 
strongly communicating class plus states corresponding to the tran- 
sient states in 7. For each state i = 1,. . . ,p ,  the action 8 is available, 
whichkeeps the aggregated MDP in state i with probability 1. The ac- 
tions of the form (2, a)  are also available, which, in the original MDP, 
correspond to a movement to state z and then a selection of action 0. 

The law of motion is defined accordingly. 
Let @(U) denote the average reward given that the initial state is 

i for the aggregated MDP, i.e., 

. n D  I '  
&U) := E:[liIn&f - Tkl{X, = E } ] .  

m = l  k = l  

A policy is optimal for the aggregated MDP if it attains p' for all 
i = 1,. . . , p  + t, where pi := supuec pi(u). An optimal pure policy 
g can be found for the aggregated MDP by any one of the standard 
MDP algorithms (for example policy improvement of linear program- 
ming). The optimal pure policy g in the aggregated MDP will have 
the following interpretation in tlie original MDP. If g(i) = 8, then it 
is best for the original MDP to remain in C; once having entered that 
strongly communicating class. On the other hand, if g(i) = (I, a), the 
original MDP should move to state 1 and choose action a. 

A stationary policy f can be constructed for the original problem 
of maximizing .(U) over U E C ,  such that a) if the state i is recurrent 
under pure policy g in the aggregated MDP, then fzO is identical to 
f;,, for z E C' and a E F2, b) if state r is transient then fz is identical 
to g(z), c) if a state i is not recurrent under pure policy g in the 
aggregated MDP, then one can find an algoritlun which moves the 
MDP to a recurrent class. Details are given in [2] 

Theorem 3 The stationary policy f constructed by the above proce- 
dure is optimal for the original problem of marimizing .(U) over all 
U E c. 
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