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Abstract

The time-average Markov Decision Processea with finite state
and action spaces are considered. Several definitions of variabil-
ity are introduced and compared. It is shown that a station.
ary policy maximizes one of these criteria, namely, the expected
long-run average variability. Furthermore, an algorithm is given
which produces such an optimal stationary policy.

1 Introduction

We consider a discrete-time Markov Decision Process(MDP) with fi-
nite state space and finite action space. Denote R,, for the reward
obtained at epoch m. This paper considers the problem of finding a
policy u that maximizes

viu) = E\i hﬂlll\fl h(Rm,‘l— Rm)]v
n—oo 1 1 n

m= m=1

for some fixed and given initial state £. ‘The variability function (., .)
compares at epoch m the current reward with the average reward over
an interval that includes m. If A(z,y) = (z — y)?, then v(u) may
be interpreted as the expected time-average variance. If h(z,y) =
z — A(z — y)? for some A > 0, then maximizing v(u) would correspond
to finding a policy u that has high expected average reward but low
expected average variance.

Under mild continuity conditions on the variability fuiction, it
shall be shown that there exists a stationary policy that maximizes
v{u). Moreover, this policy can be located by the following four-step
procedure: 1) The state space is decomposed into “strongly commu-
nicating classes” and a set of transient states; 2) For each strongly
communicating class, a mathematical program with linear constraints
and nonlinear objective function is solved; 3) An average reward MDP
problem is solved where there is one state for every strongly commu-
nicating class; 4) Lastly, an optimal stationary policy is formed by
combining the optimal solutions in step 2 with the optimal policy in
step 3.

This paper is organized as follows. The notation is given in Sec-
tion 2. In Section 3 several notions of variability are introduced and
compared. The problem of maximizing v(u) over all policies is inves-
tigated in Section 4.

2 Notation

Let S and A denote the finite state and action space, respectively.
The underlying sample space for the MDP is Q := {(z1,01,23,0a2,...):
2, €8 ,a, € A forall n=1,2,...}. The sample space f is equipped
with the o-algebra F generated by the random variables {X\, 4;, X3,
Aa,. ..} .

Let Proy, z,y € S, a € A denote the law of motion for MDP,
f denote a stationary policy and g denote a pure or nonrandomized
policy. Let C and Cs denote the class of all policies and stationary
policies, respectively.

Under any stationary policy f, the state process {X,,} is a homoge-
neous Markov chain with transition matrix P(f). A transition matrix
P(f) is said to be unichain if it has at most one recurrent class plus a
(possibly empty) set of transient states. In this case, x(f) denotes the
unique equlibrium vector associated with P(f).

For each z € S and a € A define the random variables denoting
the average state-action frequencies through epoch n as
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i WYX =2,An = a},

m=1

Zn(z,a) :=

R

where 1{A} is the indicator function of set A. Let C, denote the class
of all policies u such that {Zn(z,a)} converges Py-almost surely(Py-
as.)forallz € § and a € A. Let C; denote the class of all policies
u such that { Ey[Zn(z, a)]} converges for all z and a (see e.g. [3]).

3 Notions of Variability

In order to compare ¥(u) with the different notions of variability in-
troduced by other researchers, denote,

#(u) = timint L 3° B[R,

m=1

for the long-run average expected reward where Ry, := r( Xy, Am). Let
h(.,.) be a continuous real-valued function defined on A x R, where
A := {r(z,a) : 2 € S,a € A} and R is the set of real numbers.
Define the average expected variability as

() 1= limint L 5 Bul (R, 600}

m=1

Note that if k(z,y) = (z — y)?, then vi(u) = var{u) for all u € Cy,
where

L1
var(u) := ,,]520 n mz=:1 Eu[(Rm — $(u))’].
If h(z,y) = z — A(z — y)? then vy (u) = ¢(u) — Avar(u) for all u € Cy,
which corresponds to the criterion considered by Filar et al (4] and

Sobel[7].
As an alternative definition to v;(u), define

vy(u) := lim gr%é Eulh(Rm, $a(w))],
where "
$u(W) = LBl D (o A
Similarly, the variability vy(u) is def_ined as
va(u) := liﬂioxolf—rl; ,,.z"-:x Ey[h(Rpn, Eu[Rm])]-
Proposition 1 Ifu € Cy, then
vy(w) = vi(u) = 3 hlr(z, ), ) r(2,6)zza(0)}2za(w), (1)

where zzq(u) := ki, o0 Bu[Zn(z,a)]. Furthermore, if u is such that
{Pu(Xm =z,Amn =a)jm=1,2,...} converges forallz €S ,a€ A,
then

vi(u) = vz(u) = vz(u).

Also consider,

TIPS I RIS G
W= mgr;mg h(R,,.,h'mg}f;mZﬂRm)

! n 1 & ’
Vz :=liminf — > (B, ~ > Rn).
m=1 m=1
With this notation, the variability criterion v(u) of the Introduction
becomes v(u) = Ey[Va].
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Proposition 2 Suppose u € Cy. Then
Vi=Va= Eh[r(z,a),Zr(z,a)Z(z,a)]Z(z,a) )
z.a z,a

holds Py-a.s. Consequently Ey[Vy] = Ey[V3) = v(u) for all u € Co.

Proposition 3 Letf € Cs and let RY(f),..., RI(f) be the recurrent
classes induced by P(f). Denote (xi(f) : 2 € Ri(f)) for the equilib-
rium probability vector associated with class i, i = 1,...,q. Further
denote

¥i= 3oz, a)mi(f) fon

z,a

and 7 :=min{m : m > 1, X, € UI_, R¥(f)}. Then

=1
v(f) = Zq:P[(XfE R‘(f))Zh[r(:,a),in(Xfe R‘(f))l{u]
i=1 z,a i=1
Ti(f)fzm (3)
uf) = 3 P(X- € RiE)) Y hlr(z, 6), Yilxi(f) fuar ()
=1 z,a

Proposition 4 Suppose h(z,y) = z—A(z—y)? for some A > 0. Then,
v(u) > vi(u) for all u € Cy.

4 Optimization Results

To construct an optimal policy f € Cg, first the state space S is parti-
tioned into strongly communicating classes C!, C?,..., CP and a set
of transient states 7 (see e.g.[1], [6]) so that TF_) Py(®;) = 1, where
®; := {X, € C' almost always}. A set of states C is said to be a
strongly communicating class t) if C is a recurrent class for some sta-
tionary policy; ii) C is not a proper subset of some set D for which (i)
holds true.

Next the MDP is restricted to each of the strongly communicating
classes, Each restricted MDP corresponds to a mathematical program
that involves maximizing a nonlinear function over a simple polytope.
Based on the optimal values of the restricted MDPs, an aggregated
MDP is constructed. An optimal stationary policy for the original
problem is then obtained by combining the optimal policy for the
aggregated MDP with the optimal solutions for the restricted MDPs.

4.1 The Restricted MDP

The restricted MDP, MDP-i is obtained for each i = 1,...,p by
considering the set C' as the state space and for 2 € CF the set

Fz={a€A : Py =0forally ¢ C'} as the state dependent action
space.

For a fixed MDP-i and a fixed initial state £ € C' the correspond-
ing expected average variability for MDP-i is given by

() = B limind = 3 h(Rms > 3 R
m=1

m=1
For each MDP-i, consider the following mathematical program with
decision variables {2 : 2 € C',a € F;}:
Program Q*

T := maz 3 3 Hr(z,a), ¥ Y r(=z,0)ze0)2a

z€ Ci a€F, =€ i a€F,

s.t. Z z (5:,, - P-uy)zna =0, VV € cé
z€ Qi a€F,

S % et
s Cis€F.
Zza 2 0.

Theorem 1 For each i = 1,...,p, and for all policies u € C the
Jfollowing holds:

; 1 1¢ a1
Pu{hn“_l,i[}f; mZ=1 h(Rm.; :,_:,1 Ru) <T'®} =1
An algorithm similar to the one given in {5] constructs a stationary
policy f* for MDP-i.

Theorem 2 The stationary policy fi is optimal for MDP-i, for all
initial states { € C'. Moreover, v{(f') =T for all{ € C'.

4.2 The Aggregated MDP

In the aggregated MDP, there is one state corresponding to each
strongly communicating class plus states corresponding to the tran-
sient states in 7. For each state i = 1,..., p, the action 8 is available,
which keeps the aggregated MDP in state ¢ with probability 1. The ac-
tions of the form (z, a) are also available, which, in the original MDP,
correspond to a movement to state z and then a selection of action a.
The law of motion is defined accordingly.

Let Bi(u) denote the average reward given that the initial state is
i for the aggregated MDP, i.e.,

n p
Fi(w) = Billimint - 3> 3 TH{X,0 = B}
m=1 k=1

A policy is optimal for the aggregated MDP if it attains #° for all
i=1,...,p+¢t, where ' := sup,.; A*(u). An optimal pure policy
g can be found for the aggregated MDP by any one of the standard
MDP algorithms (for example policy improvement of linear program-
ming). The optimal pure policy g in the aggregated MDP will have
the following interpretation in the original MDP. If g(i) = 6, then it
is best for the original MDP to remain in C; once having entered that
strongly communicating class. On the other hand, if g(i) = (I, a), the
original MDP should move to state ! and choose action a.

A stationary policy f can be constructed for the original problem
of maximizing v(u) over u € C, such that a) if the state i is recurrent
under pure policy g in the aggregated MDP, then f,, is identical to
fisforze C'andae F,, b) if state z is transient then f, is identical
to g(z), ¢) if a state i is not recurrent under pure policy g in the
aggregated MDP, then one can find an algoritlun which moves the
MDP to a recurrent class. Details are given in [2]

Theorem 3 The stationary policy f constructed by the above proce-
dure is optimal for the original problem of mazimizing v(u) over all
ueC.
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