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a b s t r a c t 

We present a mean–variance analysis of the single-product, single-period, price-setting newsvendor prob- 

lem with additive, price-dependent demand. The main goal of this paper is to use a mean–variance 

framework to solve any risk-sensitive instance and find conditions under which the unimodality of the 

problem is guaranteed. We introduce such conditions via the lost sales rate elasticity, the elasticity of 

the optimal price, and the elasticity of the expected safety stock surplus to provide managerial insight in 

terms of the newsvendor’s level of service. We also simplify the optimization problem in case that those 

conditions do not hold. The main contribution of this paper is that, by evaluating the unimodality of the 

problem for any possible risk attitude, it extends previously published results found for the concavity of 

the solution in risk-neutral and moderately risk-sensitive cases. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Optimal pricing and stocking policies are commonplace. It is of-

ten that managers have to make decisions in the face of an uncer-

tain outcome and they search for the best information available

before making them. This is probably the main reason of the per-

sistence of a problem that has been investigated for over a century:

the newsvendor problem. The problem addresses this issue, not

only in the classical supply chain framework, but in many other

fields where optimal decisions have to be made in regards to a

scarce resource that is subject to random demand. This is the case

in energy dispatching ( Densing, 2013 ), nurse staffing ( Olivares, Ter-

wiesch, & Cassorla, 2008 ), revenue management in the airline in-

dustry ( Deshpande & Arikan, 2012 ), etc. In fact, the newsvendor

problem is not only persisting, but it is thriving. 

The solution to a newsvendor model can become very compli-

cated very easily. Theoretically simple problems in the sense of

their number of variables often present levels of complexity that

make it difficult to derive closed-form solutions. While it is not the

aim of this paper to detail the numerous developments rendered

to this problem, we will give a brief overview of some remarkable

work that has been performed in the last few years. 
∗ Corresponding author. 

E-mail addresses: jrubioherrero@stmarytx.edu (J. Rubio-Herrero), 

gursoy@soe.rutgers.edu (M. Baykal-Gürsoy). 
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The most basic newsvendor models consider only one control-

able variable, that is, they seek the maximization of the profit by

nly manipulating the stock quantity. The literature of this type of

roblems, as well as its applications, is vast and readers interested

n literature reviews can refer to Khouja (1999) . For a long time it

as the norm to consider the newsvendor problem as a risk-free

roblem, meaning that maximization of the expected profit was

he only criterion by which the optimization of the stock quantity

as performed. Several authors, however, began to introduce new

oncepts that also took into account the variability of the profit or

hat looked into minimizing the probability of an extremely averse

onetary outcome. This approach is well founded on risk theory , a

opic for which in turn there is extensive literature available and

hat gave way to very different risk measures. Examples of such

isk measures are the spectral risk measures ( Acerbi, 2002 ), a sub-

et of which are the coherent measures of risk ( Artzner, Delbaen,

ber, & Heath, 1999 ). Research works that used coherent measures

f risk such as conditional value at risk (CVar) have been applied

n the last years to stock optimization in the newsvendor prob-

em ( Ahmed, Çakmak, & Shapiro, 2007; Choi & Ruszczy ́nski, 2008 ).

ther authors have investigated optimality results using risk mea-

ures that are not coherent, such as the value at risk (VaR) ( Özler,

an, & Karaesmen, 2009 ) or the much more classic mean–variance

nalysis ( Chen & Federgruen, 20 0 0; Choi, Li, & Yan, 20 08; Wu, Li,

ang, & Cheng, 2009 ), to which we turn our attention to in this

aper. 

Until the 1950s there used to be a disconnect between

nventory managers and economists. For example, the classic re-

http://dx.doi.org/10.1016/j.ejor.2017.08.055
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.08.055&domain=pdf
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ult of the economic lot sizing problem did not consider a price-

ependent demand. In other words, the demand was assumed to

e given or, in the best-case scenario, to be a realization of a ran-

om variable. It was not until the 1950s that the effect of price on

he stochastic demand was introduced ( Whitin, 1955 ). This fact, in

urn led the decision makers to use the price as a decision vari-

ble to the problem in addition to the stocking quantity. In such

odels the price of the good in question is no longer a parame-

er but it needs to be optimized along with the stock quantity and

he demand is not only random, but also price-dependent (see e.g.,

etruzzi & Dada, 1999 ). Such dependence takes on the form intro-

uced in Young (1978) : 

 (p, ε) = g(p) ε + y (p) , 

here both g ( ·) and y ( · ) model nonincreasing, twice differentiable

unctions of p . If g ( p ) ≡ 1 and y (p) ≡ a − bp with a , b > 0, the de-

and is said to be in additive form. On the other hand, if y ( p ) ≡ 0

nd g(p) ≡ ap −b with a , b > 0, the demand is said to be in multi-

licative form. Although Petruzzi and Dada (1999) give some con-

itions for the unimodality (and therefore for the existence of a

nique solution) of the price-setting newsvendor problem under

dditive and multiplicative demand models, some authors have re-

earched in more depth how the uncertainty of the demand affects

he optimal solution in risk-neutral settings ( Federgruen & Hech-

ng, 1999; Mantrala & Raman, 1999; Wang, Jiang, & Shen, 2004;

u, Chen, & Xu, 2010; Xu, Cai, & Chen, 2011 ). Kocabıyıko ̆glu and

opescu (2011) introduce a risk-neutral unified model in which the

nimodality of both the additive and the multiplicative ( b < 1, i.e.

nelastic products that are price-isoelastic) demand cases can be

nalyzed with a new concept: the lost sales rate (LSR) elasticity .

heir results are central to those derived in our paper. 

As commented before, we turn our attention to the mean–

ariance analysis, but this time we focus on the single pe-

iod, single product, price-setting newsvendor problem with price-

ependent demand. The mean–variance analysis has its origin in

ortfolio optimization ( Markowitz, 1952 ) and is still the most

idely used risk measure in industry because of its conceptual

implicity. In the last few years we have witnessed the introduc-

ion of other risk measures like VaR or CVar. Despite the desirable

roperties of these new measures, they can be computationally dif-

cult to implement and do not have a clear advantage over mean–

ariance settings ( Grootveld & Hallerbach, 1999 ). 

The mean–variance framework has already been a means for

tudying this particular problem: Choi and Chiu (2012) use this

isk measure to find the optimal price and the optimal stock se-

uentially in time in the presence of multiplicative demand. This is

ypical in the fashion industry, where a stocking decision has to be

ade first, and then, once the actual realization of the demand has

ccurred, the retailer has to set a price. However, we are mostly in-

erested in joint optimization of both variables, as done in Rubio-

errero, Baykal-Gürsoy, and Ja ́skiewicz (2015) , where the authors

nalyze the conditions for the concavity of the objective function

n goods with additive demand. Since we are interested in the uni-

odality of the mean–variance objective function, our approach

s more comprehensive than that is presented in Rubio-Herrero

t al. (2015) , as unimodality is a more general result than concav-

ty. However, we ultimately pursue to express our results in terms

f the LSR elasticity as well. In short, our goals in this paper are

he following: extend the framework presented in Kocabıyıko ̆glu

nd Popescu (2011) and Rubio-Herrero et al. (2015) by consider-

ng the unimodality of the objective function in the price-setting

ewsvendor problem with additive demand; find conditions that

uarantee unimodality for any risk-averse or risk-seeking setting,

hile preserving the generality of the results by using very mild

ssumptions; and give the conditions in terms of three different

lasticities, thus providing managerial insight to the results. The
atter goal is a change with respect to the use of other metrics that

ave been historically used, like the hazard rate or the generalized

azard rate, that are much more abstract in nature. 

In the following lines, we introduce the problem formulation

n Section 2 . Then, we analyze separately the risk averse and the

isk-seeking newsvendor in Section 3 and Section 4 , respectively.

ection 5 is dedicated to studying how the profit changes with the

isk-attitude. We describe our conclusions in Section 6 . All proofs

an be found in the appendix. 

. Problem formulation 

Consider a retailer that aims at maximizing her expected profit
hile keeping the variance of the profit under control. This retailer

ells a good over a single period. This product may or may not be
erishable. In the latter case, she may sell back the excess of stock
t a salvage value. Without loss of generality, we assume that the
ood is perishable and does not have a salvage value. If there ex-
sts a salvage value, it can be incorporated by just a change of vari-
bles ( Choi & Ruszczy ́nski, 2008 ). In any case, the decision maker
ecides how much product to buy from the wholesaler at a given
ost and sets a price that this good will sell for. Since the demand
s uncertain, so is the profit, but she is interested in setting both
rice and stock quantity in a way that satisfies her sensitivity to
isk. This sensitivity is modeled according to the following perfor-

ance measure: 

˜ 
 (p, x ) = pE (min { D (p, ε) , x } ) − cx ︸ ︷︷ ︸ 

Expected prof it 

−λVar(p · min { D (p, ε) , x } ) ︸ ︷︷ ︸ 
Variance of the prof it 

, (1) 

here the variables p and x are the retailer’s price set for the good

nd the stock quantity, respectively. The replenishment cost cx is

iven by a constant cost of c monetary units per unit of product.

e assume that the unit cost is constant and independent of the

uantity replenished. The demand, D ( · , · ), is random and price-

ependent and has the following additive form ( Petruzzi & Dada,

999 ): 

 (p, ε) = a − bp + ε, 

here a , b > 0 and ε is a continuous random variable with finite

ariance Var ( ε). The term y (p) = a − bp is usually referred to as

he riskless demand . The random variable ε has density function

 ( · ) and cumulative distribution function (cdf), F ( ·). 
In our model, λ is a risk parameter that decreases the value of

he performance measure in risk-averse cases ( λ> 0) and increases

ts value in risk-seeking cases ( λ< 0). Risk-seeking instances are

uch less explored in the research literature because of the histor-

cal dominance of risk-averse perspectives. However, the existence

f risk-seeking scenarios is justified by Prospect Theory ( Kahneman

 Tversky, 1979; Levy, 1992; Tversky & Kahneman, 1992 ), which

laims that people are loss-averse rather than risk-averse and that

isk-seeking behaviors can be developed in situations where bid-

ers want to recoup important losses. Typically, human beings are

isk-seeking (risk-averse) when their financial performance is un-

er (above) their target ( Fishburn, 1977 ) and this behavior has

een shown to be transferable to organizations ( Bowman, 1982 ),

eaning that companies that are struggling financially tend to ac-

ept larger risks in their decision making. 

In this paper we make several assumptions that are helpful in

eveloping the conditions that will follow and do not interfere

reatly with our goal of creating a general framework where any

isk-sensitive instance can be solved easily or, at least, can be sim-

lified: firstly, ε is a random variable with finite variance Var ( ε)

nd compact and convex support [ A , B ], A < 0, B > 0; also, F ( · )

s twice differentiable with continuous second derivative; finally,

 (ε) = 0 . 

These assumptions are not restrictive: if ε is defined over an

pen interval, one can always consider an efficient truncation that
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Fig. 1. Typical optimal price functions in risk-averse cases. 
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captures as much information as possible. On the other hand, the

vast majority of random variables used in this type of inventory

problems have cdf’s that are twice differentiable with continuous

second derivative and, if their expectation is not 0, then its value

can always be included in a . For this reason the last condition

holds WLOG. 

The range of prices that the retailer will consider is [ c , p max ]:

obviously, one will not retail a product at a lower price than its

wholesale price; on the other hand, the upper bound is given by

the maximum price at which the worst possible realization of the

demand is nonnegative, i.e., 

p max = max 
{ p: y (p)+ A ≥0 } 

p = 

A + a 

b 
. 

On the other hand, for each price p , the stock quantity x will

not be smaller than y (p) + A (the minimum demand attainable at

price p ) and will not be larger than y (p) + B (the maximum de-

mand attainable at price p ). 

In order to simplify the derivations we will redefine the objec-

tive function in terms of the safety stock z = x − y (p) , that is, the

difference between the replenished quantity and the expected (or

riskless) demand at price p ( Petruzzi & Dada, 1999; Rubio-Herrero

et al., 2015; Thowsen, 1975 ). Since x ∈ [ y (p) + A, y (p) + B ] , this

new variable is contained in the interval [ A , B ]. After this change

of variables and some algebraic calculations, we introduce our

new performance measure: 

P (p, z) = p ( μ(z) + y (p) ) − c ( z + y (p) ) − λp 2 σ 2 (z) , (2)

where 

μ(z) = E ( min { ε, z} ) = 

∫ B 

z 

(z − u ) f (u ) du, z ∈ [ A, B ] , 

σ 2 (z) = V ar ( min { ε, z} ) = V ar ( ε) + 

∫ B 

z 

(z 2 − u 

2 ) f (u ) du 

−
[∫ B 

z 

(z − u ) f (u ) du 

]2 

, z ∈ [ A, B ] . 

These two functions of z and their characteristics will play a

key part in the development of the conditions that will follow. The

function μ( · ) is an increasing ( μ′ (z) = 1 − F (z) ), concave ( μ′′ (z) =
− f (z) ) function between A and 0. Moreover, the function σ 2 ( · ) is

an increasing function ( σ 2 ′ (z) = 2 ( z − μ(z) ) ( 1 − F (z) ) ) between 0

and Var ( ε). The proceeding sections and subsections are dedicated

to finding the conditions that guarantee a unique solution to the

problem 

max 
p∈ [ c,p max ] 

z∈ [ A,B ] 

P (p, z) . (3)

More specifically, we will look at the conditions for the qua-

siconcavity (i.e. unimodality) of P . These conditions will be found

by means of sequential optimization ( Zabel, 1970 ) and therefore

we will follow these steps: 1. Select a safety stock, z , and find the

price that maximizes P ( · , z ) for that value of z , p ∗( z ); 2. Substitute

this closed-form expression of the optimal price in the objective

function in order to come up with a function of only one variable,

P (p ∗(z) , z) = P ∗(z) ; 3. Find the safety stock z ∗ that maximizes P ∗( ·).

3. Risk-neutral and risk-averse newsvendor ( λ≥ 0) 

In order to analyze the risk-averse newsvendor, we set one

extra assumption: y (c) + 2 A ≥ 0 . This is a mild assumption that

forces the riskless demand at face-value c to be, in the worst-

case scenario, at least as much as −2 A . We know that c ≤ p max =
( a + A ) /b, then this assumption requires that p max ≥ c − A/b. In

general, perturbations or errors around the expected demand at a

given price should not be excessively large and therefore we do

not consider this to be a strong condition. The purpose of this
ssumption is to bound the optimal price from above, as explained

n the proof of Lemma 1 , which simplifies greatly the shape of the

ptimal price function and makes the optimization of P more ac-

essible. 

.1. Characteristics of the optimal price 

As introduced at the end of Section 2 , the first step in our op-

imization process is to fix a safety stock factor and find the price

hat maximizes the performance measure. For any z ∈ [ A , B ], solving

he first-order optimality condition of (2) as a function of p yields

 closed form for the optimal price: 

∂P 

∂ p 
= 0 ⇒ p ∗(z) = 

μ(z) + a + cb 

2(λσ 2 (z) + b) 
. (4)

This critical point is a maximizer because ∂ 2 P/∂ p 2 =
2(λσ 2 (z) + b) < 0 (i.e. P ( · , z ) is concave with respect to p ).

lso, clearly, p ∗(z) ≤ p ∗(z) | λ=0 = (μ(z) + a + cb) / ( 2 b ) and there-

ore given a safety stock z the optimal price decreases with the

evel of risk-aversion. It is of great importance to know whether

his optimal price is hedged by the interval [ c , p max ]. To that end,

he upcoming lemmas and results are intended to shed some light

n the shape of this function p ∗(·) : [ A, B ] → R , which is found to

e any of the two shown in Fig. 1 . In this figure we locate the

alue z c = min {{ z : p ∗(z) = c} , B } as either B or as the safety stock

hat produces an optimal price equal to c in case p ∗ is unimodal

nd eventually falls under c . 

emma 1. The optimal price p ∗( · ) is a strictly positive function in

 A , B ] and p ∗( z ) ≤ p max , ∀ z ∈ [ A , B ] . 

emma 2. The optimal price p ∗( · ) is either a monotonically increas-

ng function in [ A , B ) or a unimodal function of z. 

emark 1. Per (A.3) in the appendix, if the optimal price p ∗( · ) is

ncreasing in a subinterval of [ A , B ], then it is also concave in that

ubinterval. 

In view of the lemmas above, we can guarantee that the opti-

al price is not greater than p max but we cannot guarantee that it

s not smaller than c . This hindrance is resolved in Rubio-Herrero

t al. (2015) by assuming that λ is bounded above by 1/(4 Bp max ),

hich is the minimum value of the right-hand side of (A.2) . This

ssumption is enough to guarantee that p ∗( · ) is an increasing func-

ion in z which, along with the fact that p ∗( A ) > c , is sufficient to
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2 
onclude that the optimal price is always greater than the replen-

shment cost. In this case, in order to attain a framework that in-

ludes any risk-averse instance, we do not bound the value of the

isk parameter and therefore it is possible that the optimal price

alls under c . Since we are only concerned about prices in [ c , p max ],

e define the hedged optimal price function π ∗( · ) as the following

iecewise function: 

∗(z) = 

{
p ∗(z) , if z ≤ z c , 
c, if z > z c . 

(5) 

Clearly this function intends to bound the optimal price within

he allowed range of prices in those cases where the risk param-

ter λ is such that the optimal price eventually falls under the

eplenishment cost. The performance measure P ( · , z ) is a con-

ave function with respect to p and this means that π ∗(z) = c

aximizes P ( · , z ) within the allowed interval [ c , p max ] whenever

 

∗( z ) < c . In general we will use this function to further optimize

he performance measure P (π ∗(z) , z) = P ∗(z) with respect to z .

evertheless, there exists a range of nonnegative values for the risk

arameter in which π ∗(z) = p ∗(z) , ∀ z ∈ [ A, B ] . This is shown in the

ext lemma. 

emma 3. The optimal price p ∗( · ) is in [ c , p max ], ∀ z ∈ [ A , B ] if and

nly if λ∈ [0, y ( c )/(2 cVar ( ε))] . 

.2. Optimization of P ∗

The next step in our optimization procedure is to redefine the

bjective function as a function of only the stock factor z . This is

chieved by substituting p for the hedged optimal price function.

et us define the following functions of z : 

 

∗
1 (z) : = P (c, z) = −c 2 (λσ 2 (z) + b) + c(μ(z) + cb − z) , 

 

∗
2 (z) : = P (p ∗(z) , z) = 

1 

2 

p ∗(z)(μ(z) + a + cb) − c(z + a ) . 

The performance measure at the hedged optimal price π ∗( z )

an be expressed in terms of these two functions above as a con-

inuous piecewise nonlinear function: 

 

∗(z) := P ∗(π ∗(z) , z) = 

{
P ∗2 (z) , if z ≤ z c , 
P ∗1 (z) , if z > z c . 

The derivative of this function is: 

 

∗′ 
(z) = 

{ 

(1 − F (z)) p ∗(z)(1 − 2 λ(z − μ(z)) p ∗(z)) − c, if z ≤ z c . 

−c 2 λσ 2 ′ (z) − cF (z) ≤ 0 , if z > z c . 
(6) 

By taking left and right derivatives at z = z c (i.e. at the point

here p ∗(z) = c), we can see that P ∗( · ) is a smooth function (i.e.

ts first derivative is continuous). Moreover, since p ∗( · ) is quasi-

oncave with 0 < p ∗( z ) ≤ p max , and p ∗( A ) > c , it turns out that π ∗( · )

as at most two pieces. Consequently, P ∗( · ) will have at most two

ieces: only P ∗
2 
(·) if λ∈ [0, y ( c )/(2 cVar ( ε))] (as Lemma 3 dictates for

oderately risk-averse situations) or P ∗2 (·) and P ∗1 (·) (in this order)

f λ∈ ( y ( c )/(2 cVar ( ε)), ∞ ). 

Because we will use it in the subsequent sections, we include

elow the second derivative of the performance measure at the

edged optimal price π ∗( z ) when π ∗(z) = p ∗(z) : 

 

∗′′ 
(z) 

∣∣∣
π ∗(z)= p ∗(z) 

= P ∗
′′ 

2 (z) = 

(
p ∗

′ 
(z)(1 − F (z)) − f (z) p ∗(z) 

)
( 1 − 2 λ(z − μ(z)) p ∗(z) ) 

− 2 λp ∗(z)(1 − F (z)) ( F (z) p ∗(z) 

+ (z − μ(z)) p ∗
′ 
(z) 

)
. (7) 

Since P ∗( ·) is a continuous, smooth function and P ∗
1 
(·) is a non-

ncreasing function, it follows that 

max 
∈ [ A,B ] 

P ∗(z) = max 
z∈ [ A,z c ] 

P ∗2 (z) . (8) 
In other words, the optimal value of the performance measure

t the hedged optimal price π ∗( z ) can be found by analyzing only

he subinterval in which π ∗(z) = p ∗(z) . Therefore, any risk-averse

nstance can be simplified and reduced to optimizing a nonlinear

unction instead of a piecewise nonlinear function. On top of this,

e will introduce sufficient conditions for the unimodality of the

erformance measure at the hedged price π ∗( ·). For these condi-

ions, and for some more that will be derived later on, we build

ur analysis on the lost sales rate (LSR) elasticity , the elasticity of

he optimal price , and the elasticity of the expected safety stock sur-

lus (ESSS elasticity) , which we define. 

efinition 1. ( Kocabıyıko ̆glu & Popescu, 2011 ) The lost sales rate

LSR) elasticity for a given price p and inventory level x is defined

s 

˜ (p, x ) = 

pG p (p, x ) 

1 − G (p, x ) 
, 

here G ( p , x ) := Pr ( D ( p , ε) ≤ x ) and G p (p, x ) ≡ ∂G (p, x ) / ∂ p . 

In the case of additive demand, P r(y (p) + ε ≤ x ) =
 r ( ε ≤ x − y (p) ) = F (z) , and we can express this definition as

 function of p and z : 

˜ (p, x ) = 

pG p (p, x ) 

1 − G (p, x ) 
= 

pb f (z) 

1 − F (z) 
=: ξ (p, z) . (9) 

The LSR elasticity represents the percent change in the rate

f lost sales with respect to the percent change in price, for a

iven stock quantity x . This mathematical relationship is explored

n depth in Kocabıyıko ̆glu and Popescu (2011) . Particularizing this

xpression for the points at which the price is optimal we ob-

ain ξ (p ∗(z) , z) := ξ ∗(z) = bp ∗(z) h (z) , where h ( z ) denotes the haz-

rd rate of ε, i.e., h (z) := f (z) / (1 − F (z)) . 

efinition 2. The elasticity of the optimal price measures the per-

entage change in the optimal price when there is a one percent

hange in the safety stock: 

∗(z) := 

dp ∗(z) 

dz 

z 

p ∗(z) 
. (10) 

In order to introduce our next elasticity measure, note that the

xpected safety stock surplus is E[(z − ε) + ] ≡ z − μ(z) . 

efinition 3. The elasticity of the expected safety stock surplus

ESSS elasticity) measures the percentage change in the expected

xcess of safety stock when there is a one percent change in the

afety stock: 

(z) := 

dE 

[
( z − ε) 

+ ]
dz 

z 

E 

[
( z − ε) 

+ ] . (11) 

By definition, the expected safety stock surplus is positive and

n increase in the safety stock will inevitably produce an incre-

ent in this expectation. Therefore ω( ·) is a nonnegative function. 

The addition of these measures to our analysis provides an

conomic meaning to the conditions that we will present. This

akes our analysis much more appealing in managerial environ-

ents, as we avoid writing these conditions in terms of more

athematically-oriented terminology and jargon, such as the haz-

rd rate, even though there is a clear connection between this con-

ept and the LSR elasticity. The theorem below presents a set of

ufficient conditions for the unimodality of P ∗: 

heorem 1. Let λ≥ 0, z c = min { z : p ∗(z) = c, B } and z ψ 

= min { z :
p ∗′ 

(z) = 0 } . If 
∗(z) > 

1 

, ∀ z ∈ [ A, z ψ 

] , (12) 
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Table 1 

Example of the conditions for the unimodality of the objective func- 

tion for risk-averse scenarios. 

λ z ψ z c Cond. (12) Cond. (13) Unimodal? 

0 10 10 � – � 

0.01 −2.85 10 � � � 

0.02 −4.88 10 � � � 

0.05 −6.71 4.91 � � � 

0.06 −6.99 3.39 � � � 
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−ρ∗(z) 

ω(z) 
≤ 1 , ∀ z ∈ (z ψ 

, z c ] , (13)

then the performance measure P ∗( ·) is quasiconcave in [ A , z c ] and

the price-setting newsvendor problem with additive demand (3) has

a unique optimal solution ( z ∗, p ∗( z ∗)), where z ∗ solves P ∗′ 
2 (z) = 0 and

p ∗( z ∗) is given by (4) . 

Simple conditions that guarantee the existence of a unique

maximum in P ∗( ·) have been found in particular cases and

have been illustrated in previous publications. For instance,

Kocabıyıko ̆glu and Popescu (2011) show that in the risk-neutral

case, the LSR elasticity has to be at least 1/2 for the objective

function to be concave. Similarly, Rubio-Herrero et al. (2015) ex-

tend this lower bound for moderate risk-averse cases: when

λ< 1/(4 Bp max ), the objective function is still unimodal if the LSR

elasticity is greater than 1/2. By taking into account the shape

of the optimal price function p ∗( ·) and Theorem 1 , we can ob-

tain these bounds as well: in the risk neutral case ( λ = 0 ) and

in moderately risk-averse cases (0 < λ< 1/(4 Bp max )), p ∗( ·) is an in-

creasing and concave function, which means that z c = z ψ 

= B and

only (12) applies. When the scenario becomes more risk-averse,

the optimal price function turns unimodal and there exists now

a point z ψ 

< B such that z ψ 

= min { z : p ∗′ 
(z) = 0 } . This point iden-

tifies the maximum of p ∗( ·) and divides the optimal price function

into two subintervals: in [ A , z ψ 

), p ∗( ·) is increasing and concave;

in [ z ψ 

, z c ], p ∗( ·) is nonincreasing with a critical point in z ψ 

. The

particular and predefined shape of this function allows us to pro-

pose (12) and (13) and fully characterize the whole spectrum of

risk-averse instances. 

Example: In order to illustrate how Theorem 1 improves the

results obtained by Rubio-Herrero et al. (2015) , we will work on

the basis of one of the examples provided by the authors. In their

paper, they consider the demand function D (p, ε) = 35 − p + ε,

where ε ∼ U[ −10 , 10] . The cost of the commodity is c = 10 . Under

their assumptions, the most risk-averse case under which they can

guarantee the concavity of P ∗( ·) corresponds to a value of the risk

parameter λ = 1 / ( 4 Bp max ) = 1 / 1400 . With our focus on unimodal-

ity, we are able to prove that there is a unique maximum for values

of λ beyond 1/1400. In Table 1 , we show this for several instances

by applying our constant bounds. Fig. 2 displays the application of

our constant bounds (12) and (13) to the cases with λ = 0 . 02 and

λ = 0 . 06 . 

Example: We present now a risk-averse instance that is not

unimodal. Consider the demand function D (p, ε) = 50 − 3 p + ε. Let

c = 5 . The random variable ε has a probability density function de-

noted by f (z) = 0 . 5 f 1 (z) + 0 . 5 f 2 (z) , where f 1 ( · ) and f 2 ( · ) are in

turn the pdf’s of two normal random variables with means 12 and

−12 and variance 0.2. We assume A = −15 and B = 15 because the

density of ε beyond those points is negligible. Let λ = 10 −4 . It is

easy to verify that z c = z ψ 

= B = 15 and that the set of conditions

(12) and (13) (which can be summarized in this case as ξ ∗( z ) > 1/2)

are not met, as shown in Fig. 3 . P ∗( · ) has three critical points. 
. Risk-seeking newsvendor 

.1. Characteristics of the optimal price 

When the retailer is risk-seeking, the optimal price p ∗( · )

resents very different characteristics. From the first-order condi-

ion (4) , it is easy to see that p ∗( z ) < 0 when λ < −b/σ 2 (z) and

xhibits a discontinuity when λ = −b/σ 2 (z) . Since σ 2 ( · ) is an

ncreasing function, as z increases from A the optimal price re-

eals three possible, well differentiated pieces, that may appear in

he following order: first the optimal price is positive and non-

ecreasing with respect to z in the region where λ > −b/σ 2 (z) ;

hen this price tends to + ∞ when λ = −b/σ 2 (z) ; finally the opti-

al price surges from −∞ and attains finite negative values when

< −b/σ 2 (z) . 

While the first-order optimality condition is the same that was

btained for the risk-averse case, for z ∈ [ A , B ] the critical point

 

∗( z ) is not always a maximizer. Indeed, the second partial deriva-

ive of P with respect to p 

 

2 P/∂ p 2 = −2(λσ 2 (z) + b) , 

ndicates that the performance measure is concave with respect to

 if λ > −b/σ 2 (z) , convex with respect to p if λ < −b/σ 2 (z) and

inear in p if λ = −b/σ 2 (z) . In other words, positive values of p ∗( · )

orrespond to a maximizer of P ( · , z ), whereas negative values of

 

∗( · ) correspond to a minimizer of the performance measure. In

he former case, the concavity of P ( · , z ) with respect to p when

> −b/σ 2 (z) implies that the maximizer of P ( · , z ) in the interval

 c , p max ] when p ∗( z ) > p max is obtained at p max . In the latter case,

he convexity of P ( · , z ) with respect to p when λ < −b/σ 2 (z) im-

lies that the maximizer of P ( · , z ) in the interval [ c , p max ] is also

btained at p max when p ∗( z ) < 0. This idea is illustrated in Fig. 4 ,

here we chose two different risk scenarios for the same problem

nd plotted the objective function at z = 0 . In one scenario, the

bjective function is concave in p for z = 0 and the optimal price

s outside of the interval [ c , p max ] and it is greater than p max . In

he other scenario, the objective function is convex in p for z = 0

nd the optimal price is outside of the interval [ c , p max ] and it is

maller than 0. 

Let ˜ z = { z : λ = −b/σ 2 (z) } if λ ≤ −b/V ar(ε) and ˜ z = B if λ >

b/V ar(ε) . Note that when λ ≤ −b/V ar(ε) the function p ∗ is not

efined at z = ˜ z . 

emma 4. Let λ< 0 . The optimal price p ∗( · ) is strictly increasing at

ll points in [ A , B ) where it is defined and has a critical point at z = B .

The importance of Lemma 4 is that it gives us a good idea of

hat p ∗( · ) looks like. In particular, we know that in many risk-

eeking scenarios, the optimal price will go over p max . When that

appens, the function will never return to the interval [ c , p max ].

s a matter of fact, only two cases may occur at that point: ei-

her the function increases to a point p ∗( B ) ≥ p max or the function

resents an asymptote at z = ˜ z and p ∗( z ) < 0 in ( ̃ z , B ] . Hence, if we

et z p max = min {{ z : p ∗(z) = p max } , B } be the safety stock that pro-

uces an optimal price equal to p max , or B (whichever is smaller),

e can define the hedged optimal price function π ( · ) in the same

pirit as in the previous section: 

∗(z) = 

{
p ∗(z) , if z ≤ z p max 

, 

p max , if z > z p max 
. 

An illustration of a typical optimal price function and its cor-

esponding hedged optimal price function is presented in Fig. 5 .

btaining z p max will play a central role in characterizing the prop-

rties of the objective function P ∗( · ). 

It is also important to understand how p ∗( · ) changes with

he value of the risk parameter. It turns out that, given a safety

tock z , p ∗( z ) always increases as λ decreases: ∂ p ∗(z, λ) /∂ λ =
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Fig. 2. Conditions (12) and (13) applied to the cases with λ = 0 . 02 and λ = 0 . 06 . 

Fig. 3. Multimodal instance of a risk-averse problem. 

Fig. 4. Obtaining the optimal hedged prices in risk-seeking cases. 

−  

p  

u  

a  

z

4

 

b  

t  

p  

t

P

 

b  
σ 2 (z) p ∗(z) / 
(
λσ 2 (z) + b 

)
≤ 0 . It is interesting to see how this im-

acts the value of z p max . In Fig. 6 below we show for a set of val-

es 0 > λ1 > λ2 > · · · > λ5 that the value of z p max never increases

s we increase the level of risk-seekingness. Indeed z p max (λ1 ) =
 p max (λ2 ) = B, z p max (λ3 ) = z 3 , z p max (λ4 ) = z 4 , z p max (λ5 ) = z 5 . 

.2. Optimization of P ∗( ·) 

Let us define the function P ∗3 (z) := P (p max , z) = −p 2 max (λσ 2 (z) +
) + p max (μ(z) + a + cb) − c(z + a ) . The performance measure at
he hedged optimal price π ∗( z ) in the risk-seeking case can be ex-

ressed in terms of P ∗
2 
(·) and P ∗

3 
(·) as the following piecewise con-

inuous function: 

 

∗(z) = P ∗(π ∗(z) , z) = 

{
P ∗2 (z) , if z ≤ z p max 

, 

P ∗3 (z) , if z > z p max 
. 

The derivative of this piecewise, nonlinear function is shown
elow. Like in the risk-averse case, the left and right derivatives
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Fig. 5. p ∗( · ) and π ∗( · ) in risk-seeking cases. 

Fig. 6. Optimal price for different levels of risk-seekingness. 
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of this function at z = z p max are equal and the function is smooth. 

P ∗
′ 
(z) = 

{ 

(1 − F (z)) p ∗(z)(1 − 2 λ(z − μ(z)) p ∗(z)) − c, if z ≤ z p max 
, 

−p 2 max λσ 2 ′ (z) + p max (1 − F (z)) − c, if z > z p max 
. 

Its critical points are attained at P ∗′ 
(z) = 0 : 

P ∗
′ 
(z) = 0 ⇒ 

⎧ ⎨ 

⎩ 

(1 − F (z))(1 − 2 λ(z − μ(z)) p ∗(z)) = 

c 

p ∗(z) 
, if z ≤ z p max 

, 

F (z) = 1 − c 

p max 
− λp max σ

2 ′ (z) , if z > z p max 
. 

(14)

Like in the risk-averse case, where P ∗
1 
(·) was always monotonic,

the second piece of P ∗( · ), P ∗
3 
(·) , has a well predefined shape, as

shown in the next lemma. 

Lemma 5. The function P ∗
3 
(·) is unimodal in [ A , B ] . 

This very specific shape of P ∗3 (·) makes the analysis much eas-

ier, especially if the sign of the slope at the point where this func-

tion and P ∗
2 
(·) intersect is known. For example, if the slope at the

joint is negative, then the mode of P ∗3 (·) has already occurred when

this function becomes part of P ∗( · ), and therefore the maximum
f P ∗( · ) will take place in the interval where P ∗(z) = P ∗2 (z) . Con-

ersely, if the slope at the joint is positive, the maximum of P ∗3 (·)
ill occur in the section of P ∗( · ) where P ∗(z) = P ∗

3 
(z) . This idea is

llustrated in Fig. 7 , where, for the sake of generality, P ∗
2 
(·) is not

lways drawn as a unimodal function. 

In analyzing the slope at the joint we introduce below two

hresholds for λ. 

• Let λz p max 
be the risk parameter that gives way to a scenario

where p ∗(B ) = p max . In other words, λz p max 
represents the sce-

nario with the lowest value of λ such that z p max = B . More in-

tuitively, the value of λz p max 
in the case shown in Fig. 6 is λ2 .

Analytically, by using (4) we conclude that 

λz p max 
= 

a + b(c − 2 p max ) 

2 p max V ar(ε) 
. 

Any value of λ in the interval [ λz p max 
, 0] will thus produce a

hedged optimal price function π ∗( · ) equal to the optimal price

function p ∗( · ). Any value of λ in the interval (−∞ , λz p max 
) will

result in a piecewise hedged optimal price function. 
• Let λt be the value of the risk parameter that would make

P ∗′ 
2 

(z p max ) = P ∗′ 
3 

(z p max ) = 0 . By using (14) we conclude that 

λt (λ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−∞ , if λ ≥ λz p max 
, 

1 − c 

(1 − F (z pmax (λ))) p max 

2 ( z p max 
(λ) − μ(z p max 

(λ)) ) p max 
, if λ < λz p max 

. 

where we have made it clear that λt changes with the level

of risk-seekingness λ through the value of z p max . The value of

λt when λ ≥ λz p max 
can be obtained from (14) by taking into

account that, per definition, z p max (λ) = B in these cases. 

Clearly λ> λt ( λ) implies P ∗′ 
2 

(z p max ) = P ∗′ 
3 

(z p max ) < 0 . Conversely,

≤λt ( λ) implies P ∗′ 
2 

(z p max ) = P ∗′ 
3 

(z p max ) ≥ 0 . Since λt is not a con-

tant threshold value, but rather it changes with λ, in theory the

lope at the joint could change its sign several times as we de-

rease λ. The following lemma shows that this is not the case. 

emma 6. There is only one solution to the equation λ = λt (λ) in

(−∞ , 0) . 

This result is important because it means that P ∗′ 
(z p max ) = 0

nly once in [ A , B ]. Given that λt (0) = −∞ (because z p max (0) = B ),

his implies that the slope at z p max starts being negative as we de-

rease λ from a risk-neutral instance. At some risk-seeking instance

e attain the equality λ = λt (λ) and P ∗′ 
(z p max ) = 0 . For more risk-

eeking settings, we will have a positive slope at the joint between

 

∗
2 (·) and P ∗3 (·) . This is shown graphically in Fig. 8 . 

We can also have some insight about how the critical points of

 

∗
2 
(·) and P ∗

3 
(·) change with λ. To this end we will define, for a

iven risk parameter λ, the values 

2 (λ) = min 

{
z ∈ [ A, B ] : P ∗

′ 
2 (z) = 0 

}
, 

3 (λ) = min 

{
z ∈ [ A, B ] : P ∗

′ 
3 (z) = 0) 

}
. 

In other words, ζ 2 ( λ) and ζ 3 ( λ) denote the minimum safety

tock that produces a critical point in P ∗
2 
(·) and P ∗

3 
(·) , respec-

ively, within the interval [ A , B ] and for a given risk parameter λ.

ince P ∗′ 
2 (A ) > 0 , ζ 2 ( λ) always represents a maximum. Since, per

emma 5 , P ∗
3 
(·) is unimodal, ζ 3 ( λ) always represents the unique

aximum of this function. 

emma 7. Let λA < λB ≤ 0 . Then ζ 2 ( λA ) > ζ 2 ( λB ) and

3 ( λA ) > ζ 3 ( λB ) . In other words, the safety stock at which the

rst maximum in P ∗
2 
(·) and the only maximum in P ∗

3 
(·) occur over

he interval [ A , B ] increases as λ decreases. 

We introduce now a sufficient condition for P ∗2 (·) to be uni-

odal. 
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Fig. 7. Importance of the slope at the joint between P ∗2 and P ∗3 . 

Fig. 8. Explanation of the relationship between λ and λt ( λ) to determine the sign 

of the slope at z p max 
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emma 8. Let λ≤ 0 . If the LSR elasticity ξ ∗( · ) is bounded below by 

∗(z) > 

2 bc 

A + a + cb 
= 

c 

p ∗(A ) 
, ∀ z ∈ [ A, B ] , (15) 

hen the performance measure P ∗
2 
(·) is quasiconcave in [ A , B ] . 

orollary 1. If condition (15) holds for a value of the risk param-

ter ˆ λ in the interval (−∞ , 0] , it also holds for any instance with

isk parameter in the interval (−∞ , ̂  λ) . This follows because ξ ∗(z) =
p ∗(z) b f (z) / (1 − F (z)) increases with the level of risk-seekingness

p ∗( z ) increases as λ decreases). 

This lemma and its corollary have two important consequences:

• If the risk-neutral problem is unimodal, then any risk-seeking

problem is also unimodal. 
• The lower bound provided in (15) is always smaller than 1.

When analyzing the risk-neutral case, it can, in some cases, be

smaller than the bound of 1/2 provided by Kocabıyıko ̆glu and

Popescu (2011) . Therefore, we can extend their sufficient condi-

tion for the concavity of the problem and claim that the quasi-

concavity of the risk-neutral problem is guaranteed if 

ξ ∗(z) > min 

{ 

c 

p ∗(A ) 
, 

1 

2 

} 

, ∀ z ∈ [ A, B ] . 

We are now prepared to establish the theorems that tackle the

nimodality of the risk-seeking newsvendor problem. 
heorem 2. Let λ∈ [ λt ( λ), 0) . Then, 

max 
∈ [ A,B ] 

P ∗(z) = max 
z∈ [ A,z p max ] 

P ∗2 (z) . (16) 

oreover, if P ∗2 (·) is unimodal in [ A , B ], then the performance measure

 

∗( · ) is quasiconcave and the price-setting newsvendor problem with

dditive demand (3) has a unique optimal solution ( ζ 2 ( λ), p ∗( ζ 2 ( λ))),

here ζ 2 ( λ) solves P ∗′ 
2 

(z) = 0 and π ∗( ζ 2 ( λ)) is given by (4) . 

heorem 3. Let λ< 0 and λ ∈ (−∞ , λt (λ)) . Then, 

max 
∈ [ A,B ] 

P ∗(z) = max { P ∗(ζ3 (λ)) , max 
z∈ [ A,z p max ] 

P ∗2 (z) } . (17) 

oreover, if P ∗
2 
(·) is unimodal in [ A , B ], then the performance measure

 

∗( · ) is quasiconcave and the price-setting newsvendor problem with

dditive demand (3) has a unique optimal solution ( ζ 3 ( λ), p ∗( ζ 3 ( λ))),

here ζ 3 ( λ) solves P ∗′ 
3 

(z) = 0 and π ∗( ζ 3 ( λ)) is given by (5) . 

Example: Consider the same demand function as in Section 3 ,

 (p, ε) = 35 − p + ε, where ε ∼ U[ −10 , 10] . The cost of the com-

odity is c = 10 and p ∗(A ) = ( A + a + cb ) / ( 2 b ) = 17 . 5 . Let us

onsider two risk-seeking instances: λ1 = −0 . 001 and λ2 = −0 . 01 .

 simple application of Eq. (15) for the case of λ = 0 yields the

ondition ξ ∗( z ) > 0.57, which holds in [ A , B ] because ξ ∗(A ) = 0 . 875

nd the hazard rate is increasing for a uniform distribution.

er Corollary 1 , P ∗
2 
(·) is unimodal in this interval for any

isk-seeking instance. For these two scenarios, we obtain that

 p max (−0 . 001) = B = 10 and z p max (−0 . 01) = 1 . 28 . These two val-

es yield λt (−0 . 001) = −∞ and λt (−0 . 01) = −5 . 2 · 10 −4 . Since

t (−0 . 001) < −0 . 001 , by virtue of Theorem 2 , the only solu-

ion to P ∗′ 
2 (z) = 0 provides the triple that solves the problem

 ζ2 (−0 . 001) = 2 . 24 , π ∗(ζ2 (−0 . 001)) = 22 . 11 , P ∗(ζ2 (−0 . 001)) = 

08 . 5 . Since λt (−0 . 01) > −0 . 01 , by virtue of Theorem 3 , the only

olution to P ∗′ 
3 (z) = 0 provides the triple that solves the prob-

em ( ζ3 (−0 . 01) = 8 . 48 , π ∗(ζ3 (−0 . 01)) = 33 . 19 , P ∗(ζ3 (−0 . 01)) =
65 . 58 ). Fig. 9 shows graphically the solution to the instance with

= −0 . 01 . 

Example: We present now a risk-seeking instance that is not

nimodal. Consider the demand function D (p, ε) = 20 − 1 . 2 p + ε.

et c = 6 . The random variable ε has a U-quadratic probability

ensity function denoted by f (z) = 12 ( u − (B + A ) / 2 ) 
2 
/ (B − A ) 3 in

he interval [6, 6]. Let λ = −0 . 005 . The sufficient condition for the

nimodality of the problem as introduced by (15) is not satisfied

n the entire interval [ −6 , 6] , as shown in Fig. 10 . In this case

/p ∗(A ) = 0 . 68 . The function P ∗( · ) has three critical points. 
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Fig. 9. Example of a risk-seeking newsvendor problem ( D (p, ε) = 35 − p + ε, ε ∼ U[ −10 , 10] , c = 10 , λ = −0 . 01 ). 

Fig. 10. Multimodal instance of a risk-instance problem. 
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5. Sensitivity analysis of the expected profit and the variance 

of the profit 

Managerially speaking, the ultimate goal of this analysis is to

set the mean and the second central moment (i.e. the variance)

of the profit. The selection of an appropriate risk parameter λ is

done according to these values and to how acceptable these values

are for the decision maker. However, one rarely knows the exact

value of the risk parameter that yields the desired expected profit

and variance of the profit. If the profit has typically an order of

magnitude of ∼ 10 m , a first approximation can be made by select-

ing a value of λ that has order of magnitude ∼ 10 −m . Then, the

mean–variance tradeoff will present two terms with the same or-

der of magnitude (the variance of the profit is of order ∼ 10 2 m ).

For this reason, we might have to adjust the value of λ in sev-

eral iterations. This fact makes it important to know beforehand

how the expected profit and the variance of the profit will change

as a function of the risk parameter. Intuitively, we should expect

that increasing the value of λ (i.e. becoming more risk-averse) will

reduce the expected profit in exchange for a lower variance of the

profit. Likewise, decreasing the value of λ (i.e. becoming more risk-

seeking) will reduce the expected profit in exchange for a higher

variance of the profit. Our results confirm this behavior. 

Lemma 9. In risk-averse cases, the expected profit and the variance

of the profit at the hedged optimal price π ∗( z ) decrease as λ increases.
n risk-seeking cases, as λ decreases, the expected profit decreases and

he variance of the profit increases. 

emark 2. Let λ1 > λ2 > 0. Then the optimal pair (z ∗
λ1 

, π ∗(z ∗
λ1 

))

roduces lower expected profit and a lower variance of the profit

han the optimal pair (z ∗
λ2 

, π ∗(z ∗
λ2 

)) . 

emark 3. Let λ1 < λ2 < 0. Then the optimal pair (z ∗
λ1 

, π ∗(z ∗
λ1 

))

roduces lower expected profit and higher variance of the profit

han the optimal pair (z ∗
λ2 

, π ∗(z ∗
λ2 

)) . 

. Conclusions 

The present paper seeks to find a general solution

ramework and a full characterization for the mean–variance

ewsvendor problem with price-dependent and additive demand.

he performance measure must be seen as a weighted combi-

ation of the expected profit and the variance of the profit. The

elative importance of the variance of the profit as well as the sign

f its contribution to such measure is given by the risk parameter,

. The decision maker should see this maximization problem as

 method to attain optimal stocking and pricing policies in view

f his or her risk profile. For each value of λ the maximization

roblem (3) produces a pair of policies that will in turn yield an

xpected profit and variance of the profit. These two quantities
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re ultimately the basis of the decision maker’s actions. It is then

hen she will have to resolve whether these levels of expecta-

ion and variance of the profit are acceptable and fine-tune the

alue of λ accordingly. Fortunately, the model provides intuitive

nsight on the changes in the first moment and in the second

entral moment of the profit function: the expected profit and

he variance of the profit decrease with the level of risk-aversion,

hereas they decrease and increase respectively with the level of

isk-seekingness. Therefore tuning the value of λ becomes easier

s we know beforehand how it will affect the objective function. 

Our results extend the framework of elasticity-related results

or additive demand models to fit any risk-sensitive instance,

hus complementing those reported by Kocabıyıko ̆glu and Popescu

2011) and Rubio-Herrero et al. (2015) for risk-neutral and moder-

tely risk-sensitive cases, respectively. We find that any instance of

he risk-sensitive newsvendor problem with mean–variance trade-

ff can be reformulated as a simplified optimization problem.

oreover, we provide sufficient conditions for the unimodality of

isk-sensitive cases in terms of constant bounds of the LSR elas-

icity, the optimal price elasticity, and ESSS elasticity. While the

xistence of a unique maximum at a given risk-averse level does

ot guarantee the existence of a unique maximum for higher risk

version, we prove that if an instance of the risk-seeking problem

s unimodal, then it will also be unimodal for a more risk-seeking

ase. Finally, we come up with a lower bound of the LSR elasticity

or the unimodality of the risk-neutral problem that can, in some

ases, be sharper than that proposed by Kocabıyıko ̆glu and Popescu

2011) for its concavity. 

We want to emphasize that the simplification of this optimiza-

ion framework for any risk-sensitive instance is possible because

he additive demand model yields a closed-form mathematical

xpression for the optimal price p ∗( · ). Albeit this price is not

ecessarily within the range [ c , p max ] and produces a perfor-

ance measure P ∗( · ) that in general is piecewise and nonlinear, its

ractability allowed us to characterize P ∗( · ) fully. This was crucial

o develop constant lower bounds for the unimodality of the objec-

ive function. It remains a challenge to examine and simplify this

ean–variance framework under the light of other demand mod-

ls whose optimal price functions cannot be obtained in a closed

orm (e.g. the multiplicative or isoelastic demand model) and to

ee how the conditions found here change when the newsvendor

roblem takes place in a multiperiod time horizon. These will be

ur most imminent research directions. 

ppendix A. Proofs of selected theorems and lemmas 

emma 1 

roof. The first claim is supported by the numerator of (4) be-

ng strictly positive since μ(z) + a + cb ≥ A + a + cb = A + y (c)

 2 cb > 0 . 

To prove that p ∗( z ) ≤ p max , we focus first on the risk-neutral

ase. When λ = 0 , the optimal price p ∗ is an increasing func-

ion in z . Indeed, in this case p ∗(z) | λ=0 = ( μ(z) + a + cb ) / ( 2 b ) and

p ∗′ 
(z) = ( 1 − F (z) ) / ( 2 b ) > 0 . Therefore, when λ = 0 the optimal

rice has a maximum value p ∗(B ) = ( a + cb ) / ( 2 b ) . This value is

maller than p max because y (c) + 2 A ≥ 0 . Hence, our only assump-

ion serves the purpose of bounding the optimal price from above.

Given that, per (4) , p ∗(z) ≤ p ∗(z) | λ=0 , we conclude that in the
∗
isk-averse case p ( z ) ≤ p max . �
emma 2 

roof. The derivative of the optimal price, p ∗( · ), with respect to

he safety stock, z , is 

p ∗
′ 
(z) = 

1 − F (z) 

2(λσ 2 (z) + b) 
(1 − 4 λ(z − μ(z)) p ∗(z)) . (A.1) 

It is not guaranteed that this is positive. As a matter of fact, we

ave that 

p ∗
′ 
(z) > 0 ⇐⇒ λ < 

1 

4(z − μ(z)) p ∗(z) 
. (A.2) 

It is easy to see that p ∗′ 
(A ) = 1 / (2 b) and p ∗′ 

(B ) = 0 . Also

p ∗′ 
(z) = 0 in ( A , B ) if and only if there are solutions to the equation

p ∗(z) = 1 / ( 4 λ(z − μ(z)) ) . On the other hand, the second derivative

f the optimal price p ∗( · ) for all z ∈ ( A , B ) is 

p ∗
′′ 
(z) = 

(
− f (z) − λσ 2 ′ (z)(1 − F (z)) 

λσ 2 ( z) + b 

)
1 − 4 λ(z − μ(z)) p ∗(z) 

2(λσ 2 (z) + b) 

−4 λ
1 − F (z) 

2(λσ 2 (z) + b) 
(F (z) p ∗(z) + (z − μ(z)) p ∗

′ 
(z)) , 

(A.3) 

hich, when evaluated at the points where p ∗′ 
(z) = 0 is 

p ∗
′′ 
(z) | p ∗′ (z)=0 = −4 λ

1 − F (z) 

2(λσ 2 (z) + b) 
F (z) p ∗(z) < 0 . (A.4) 

Therefore, any critical point that exists in ( A , B ) is a max-

mum. Since p ∗′ 
(A ) > 0 and p ∗′ 

(B ) = 0 , the equation p ∗(z) =
 / ( 4 λ(z − μ(z)) ) has at most one solution in ( A , B ) and one of the

ollowing outcomes occur: if such a solution does not exist, the

unction p ∗( · ) is increasing in [ A , B ) with a maximum at z = B ; if

uch a solution exists at a point z ψ 

, the function p ∗( · ) increases

n [ A , z ψ 

), has a maximum at z = z ψ 

, decreases in [ z ψ 

, B ), and

as an inflection point at z = B . It is consequently quasiconcave

unimodal). �

emma 3 

roof. By Lemma 1 , when λ≥ 0, p ∗( z ) ≤ p max , ∀ z ∈ [ A , B ]. It remains

o validate the conditions for the optimal price to be greater than

he replenishment cost. 

If we impose in (4) that the optimal price is at least as

arge as the replenishment cost, it follows that p ∗( z ) ≥ c when

≤ ( μ( z) + y (c) ) / ( 2 cσ 2 ( z) ) . Therefore this holds for all z ∈ [ A , B ]

s long as λ ≤ min 

z∈ [ A,B ] 
( μ( z) + y (c) ) / ( 2 cσ 2 ( z) ) . 

Let t(z) = ( μ(z) + y (c) ) / ( 2 cσ 2 (z) ) . We will prove that

his function is decreasing. Its first derivative is t ′ (z) =
(1 − F (z)) σ 2 (z) − σ 2 ′ (z)(μ(z) + y (c)) 

)
/ 

(
2 c 

(
σ 2 (z) 

)2 
)

. While 

he denominator is always nonnegative, we can also prove

hat the numerator is nonpositive. Using the equality
2 ′ (z) = 2(1 − F (z))(z − μ(z)) , note that the numerator is non-

ositive if σ 2 (z) ≤ 2(z − μ(z))(μ(z) + y (c)) . 

Both sides of this equation are nonnegative in [ A , B ] and equal

o 0 at z = A . Moreover, 

 

2(z − μ(z))(μ(z) + y (c)) ] 
′ = 2 F (z)(μ(z) + y (c)) 

+ σ 2 ′ (z) ≥ σ 2 ′ (z) . 

Therefore, it is clear that σ 2 (z) − 2(z − μ(z))(μ(z) + y (c)) ≤
 and t ( · ) is a decreasing function of z . This implies that

 

∗( z ) ≥ c , ∀ z ∈ [ A , B ] if and only if 

≤ min t(z) = t(B ) = 

y (c) 
. �
z∈ [ A,B ] 2 cV ar(ε) 
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Theorem 1 

Proof. We will analyze P ∗
2 
(·) in [ A , z c ]. P ∗

2 
is a continuous

function with P ∗′ 
2 (A ) = p ∗(A ) − c > 0 and P ∗′ 

2 (z c ) < 0 . The last in-

equality follows because in case P ∗( · ) is a piecewise, nonlinear

function, then it is also smooth (i.e. P ∗
2 
(z c ) = P ∗

1 
(z c ) ) and P ∗

1 
(·) is

a decreasing function in [ z c , B ]. Therefore, there must be at least

one point in [ A , z c ] where P ∗′ 
2 

(z) = 0 . This point is unique and con-

fers quasiconcavity to P ∗2 if P ∗′′ 
2 (z) | 

P ∗′ 
2 

(z)=0 
< 0 . Per (6) , at the crit-

ical points 1 − 2 λ(z − μ(z)) p ∗(z) = c/ ( p ∗(z)(1 − F (z)) ) holds and

we can write (7) in terms of the hazard rate h ( z ) as 

cp ∗
′ 
(z) 

p ∗(z) 
− h (z) c − 2(1 − F (z)) λp ∗(z) (

F (z) p ∗(z) + (z − μ(z)) p ∗
′ 
(z) 

)
< 0 . 

By using the expression of the LSR elasticity at the optimal

price p ∗( z ) in additive models, ξ ∗(z) = bp ∗(z) h (z) , and observ-

ing that F (z) p ∗(z) + (z − μ(z)) p ∗′ 
(z) = [ (z − μ(z)) p ∗(z) ] 

′ 
we can

rewrite the formula above as 

ξ ∗(z) > 

(
p ∗

′ 
(z) − 2(1 − F (z)) λp ∗(z) 2 

c 

×
(
F (z) p ∗(z) + (z − μ(z)) p ∗

′ 
(z) 

))
. (A.5)

Assume that p ∗( · ) is a unimodal function and consider the

two subintervals [ A , z ψ 

] and ( z ψ 

, z c ]. We will apply condition

(A.5) to both subintervals. In [ A , z ψ 

] the optimal price is non-

decreasing and concave with only one critical point at z = z ψ 

. It

follows that the second term inside the parenthesis is nonposi-

tive and the unimodality is guaranteed as long as ξ ∗(z) > bp ∗′ 
(z) ≤

bp ∗′ 
(A ) = 1 / 2 , ∀ z ∈ [ A, z ψ 

] . In ( z ψ 

, z c ] the optimal price is non-

increasing with only one critical point at z = z c if z c = B (other-

wise the function is strictly decreasing in ( z ψ 

, z c ]). Therefore the

first term inside the parenthesis is nonpositive, but the second is

only nonpositive if F (z) p ∗(z) + (z − μ(z)) p ∗′ 
(z) ≥ 0 . Per the def-

inition of the ESSS elasticity, note that E 

[
( z − ε) + 

]
= (z − μ(z))

and 

[
E 

[
( z − ε) + 

]]′ = F (z) . Therefore this condition can be written

as 
[
E 

[
( z − ε) + 

]]′ 
p ∗(z) + E 

[
( z − ε) + 

]
p ∗′ 

(z) ≥ 0 . Applying the defi-

nitions of ω( · ) and ρ∗( · ) as in (10) and (11) we can guarantee

that the second term inside the parenthesis is nonpositive if 

−ρ∗(z) 

ω(z) 
≤ 1 . 

If this condition applies, then (A.5) is reduced to ξ ∗( z ) > 0 which

always holds. �

Lemma 4 

Proof. We analyze this function in two subintervals, [ A, ̃  z ) and

( ̃ z , B ] . Consider Eq. (A.1) . Clearly, there is always a critical point at

z = B . Also, per this equation, when the function p ∗( · ) is strictly

increasing for all z : p ∗( z ) > 0. When p ∗( z ) < 0 (i.e. ˜ z < z ≤ B ) the

function p ∗( · ) tends to −∞ as we approach ˜ z from the right and

therefore it is concave and increasing at its right limit towards B ,

reaching to a value at z = B of p ∗(B ) = ( a + cb ) / ( 2(λV ar(ε) + b) ) .

Assume it is decreasing in some region in ( ̃ z , B ) . Then the function

must present a local maximum in such interval. However, this is

not possible since, per (A.4) , if there is a critical point in ( ̃ z , B ) the

function is convex at such point and should be a minimum. There-

fore the optimal price p ∗( · ) has only one critical point at z = B,

which is also an inflection point. We conclude that p ∗( · ) is strictly
increasing in ( ̃ z , B ) . �
emma 5 

roof. The function P ∗
3 
(·) has at least one critical point because

 

∗′ 
3 

(A ) > 0 and P ∗′ 
3 

(B ) < 0 . The first-order optimality condition

olves the equation 

= 

p max (1 − F (z)) − c 

p 2 max σ 2 ′ (z) 
= 

1 − c 

p max (1 − F (z)) 

2 p 2 max (z − μ(z)) 
. 

The function on the right-hand side of this equation is decreas-

ng because its denominator increases in z and its numerator de-

reases in z . Therefore, it attains the constant value λ only once.

iven the signs of P ∗′ 
3 (A ) and P ∗′ 

3 (B ) , this unique critical point is a

aximum. �

emma 6 

roof. This result follows easily because lim λ→ λ−
z p max 

λt (λ) = −∞
remember that z p max (λ) = B if λ ∈ [ λz p max 

, 0) ) and because λt ( λ)

ncreases as λ decreases. The latter is easy to see because z p max 

ecreases when λ decreases, which makes the numerator of λt ( λ)

ncrease and the denominator decrease as λ decreases. �

emma 7 

roof. For clarity of exposition, we will let λB = 0 and λA < λB ,

lthough this result is straightforward to show for any relation

A < λB ≤ 0. 

Let ˆ z = min { z : F (z) = 1 − c/ p ∗(z) | λ=0 } be the first maximum of

he risk-neutral problem. To see that this point is indeed a max-

mum, consider the risk-neutral problem: in this case z p max = B .

here is at least a critical point because P ∗′ 
2 (A ) > 0 , and P ∗′ 

2 (B ) < 0 .

iven the sign of P ∗′ 
2 

(A ) this first critical point, ˆ z , will be a maxi-

um. 

Compare the first-order optimality conditions of the risk-

eutral problem and the risk-seeking problems of the functions

 

∗
2 
(·) and P ∗

3 
(·) under the light of the optimal price. Taking into

ccount that p ∗( z ) > 0 whenever P ∗2 (·) applies, in any risk-seeking

nstance and for any safety stock we have that p ∗(z) | λ= λA 
≥

p ∗(z) | λ= λB 
. Therefore 

 − c 

p ∗(z) | λ= λA 

(
1 − 2 λA (z − μ(z)) p ∗(z) | λ= λA 

) ≥ 1 − c 

p ∗(z) | λ= λB 

, 

nd 

 − c 

p max 
− λA p max σ

2 ′ (z) ≥ 1 − c 

p max 
. 

Consequently both first-order conditions will have their first so-

ution at a safety stock higher than ˆ z . This is illustrated in Fig. A.11 ,

here a risk-neutral condition and a risk-seeking condition are

hown. �

emma 8 

roof. The function P ∗
2 
(·) has at least one solution in [ A , B ] be-

ause P ∗′ 
2 (A ) > 0 and P ∗′ 

2 (B ) < 0 . Using (14) , consider the equation

 

∗′ 
2 

(z) = 0 . This can be written as 

= 

1 − c 

p ∗(z)(1 − F (z)) 

2(z − μ(z)) p ∗(z) 
. 
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Fig. A.11. Illustration of Lemma 7 . 
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(i.e. as λ decreases, the variance of the profit increases). �
Compare both sides of this equation. The number of times

hat the function of the right-hand side crosses the con-

tant λ is the number of critical points of P ∗
2 
(·) . Since

lim 

→ A 
( 1 − c/ ( p ∗(z)(1 − F (z)) ) ) / ( 2(z − μ(z)) p ∗(z) ) = ∞ , if this func-

ion is always decreasing, it will cross λ exactly once. Taking into

ccount that the denominator 2(z − μ(z)) p ∗(z) is nondecreasing, it

s enough that the numerator is decreasing: 

 

1 − c 

p ∗(z)(1 − F (z)) 

] ′ 
= 

p ∗
′ 
(z)(1 − F (z)) − f (z) p ∗(z) 

p ∗(z) 2 (1 − F (z)) 2 
, 

hich follows if p ∗′ 
(z)(1 − F (z)) − f (z) p ∗(z) < 0 or, in terms of the

SR elasticity, if ξ ∗(z) > bp ∗′ 
(z) . 

An upper bound for p ∗′ 
(·) at the critical points is 

p ∗
′ 
(z) 

∣∣∣∣
P ∗′ (z)=0 

= − 1 

2 

(
λσ 2 (z) + b 

)(
1 − 2 c 

p 
− F (z) 

)
≤ c 

p ∗(z) 
(
λσ 2 (z) + b 

) = 

2 c 

μ(z) + a + cb 

≤ 2 c 

A + a + cb 
, 

hence the condition ξ ∗( z ) > c / p ∗( A ) can be derived. �

heorem 2 

roof. For λ> λt ( λ), P ∗′ 
(z p max ) < 0 . Because of Lemma 5 , the

unction P ∗
3 
(·) is decreasing in [ z p max , B ] . Therefore, max 

z∈ [ A,B ] 
P ∗(z) =

max 
∈ [ A,z p max ] 

P ∗2 (z) . If P ∗
2 

is unimodal in [ A , B ], then its only maximum

ccurs in the interval [ A, z p max ] and can be easily attained by solv-

ng P ∗′ 
2 (z) = 0 . 

For the case λ = λt (λ) , z p max is the critical point of P ∗
3 
(·) and a

ritical point of P ∗
2 
(·) . As a result, Eq. (16) still holds, as well as the

est of the theorem. �

heorem 3 

roof. For λ< λt ( λ), P ∗′ 
(z p max ) > 0 . Because of Lemma 5 , the func-

ion P ∗
3 
(·) has its only maximum in [ z p max , B ] . In general, the func-

ion P ∗
2 
(·) may have several critical points in [ A, z p max ] . Therefore,

max 
∈ [ A,B ] 

P ∗(z) = max { P ∗(ζ3 (λ)) , max 
z∈ [ A,z p max ] 

P ∗2 (z) } . 
If P ∗2 (·) is unimodal in [ A , B ], then its only maximum occurs in

he interval [ z p max , B ] , where P ∗(z) = P ∗3 (z) . Hence, the maximum

f P ∗( · ) is attained at the only point that solves P ∗′ 
3 (z) = 0 , which

s ζ 3 ( λ). �

emma 9 

roof. Let �∗( z , λ) be the profit at the hedged price π ∗( z , λ). Re-
all that the profit is a random variable. From (2) we can we can
edefine our performance measure at the hedged price π ∗( z , λ): 

(z, λ) = π ∗(z, λ) ( μ(z) + y (π ∗(z, λ)) ) − c ( z + y (π ∗(z, λ)) ) ︸ ︷︷ ︸ 
E ( �∗ (z,λ) ) 

−λπ ∗(z, λ) 2 σ 2 (z) ︸ ︷︷ ︸ 
Var ( �∗ (z,λ) ) 

. 

Consider first the risk-averse case. When λ> 0: 

 ( �∗(z, λ) ) = 

{ 

c(μ(z) − z) if z > z c , 
p ∗(z, λ)(μ(z) + a − bp ∗(z, λ)) 

−c(z + a − bp ∗(z, λ)) if z ≤ z c . 

 ar ( �∗(z, λ) ) = 

{
c 2 σ 2 (z) if z > z c , 

p ∗(z, λ) 2 σ 2 (z) if z ≤ z c . 

For any given stock factor z the derivative of these two func-
ions are: 

∂ 

∂λ
E ( �∗(z, λ) ) = 

{ 

0 if z > z c , 
∂ p ∗(z, λ) 

∂λ
( μ(z) + a + b ( c − 2 p ∗(z, λ) ) ) if z ≤ z c . 

∂ 

∂λ
V ar ( �∗(z, λ) ) = 

⎧ ⎨ 

⎩ 

0 if z > z c , 

−
2 

(
σ 2 (z) 

)2 

λσ 2 (z) + b 
p ∗(z, λ) 2 if z ≤ z c . 

Given that ∂ p ∗(z, λ) / ∂λ = −σ 2 (z) p ∗(z, λ) / ( λσ 2 (z) + b ) ≤ 0 and

hat, per (4) , μ(z) + a + b ( c − 2 p ∗(z, λ) ) > 0 in risk-averse cases,

e conclude that the expected profit for a given stock factor at the

edged optimal price does not increase with λ. Also, ∂Var ( �∗( z ,

))/ ∂λ≤ 0 (i.e. as λ increases, the variance of the profit does not

ncrease). 

Now consider the risk-seeking case. When λ< 0: 

 ( �∗(z, λ) ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

p ∗(z, λ)(μ(z) + a − bp ∗(z, λ) 
− c(z + a − bp ∗(z, λ)) if z ≤ z p max 

, 

p max (μ(z) + a − bp max ) 
− c(z + a − bp max ) if z > z p max 

. 

 ar ( �∗(z, λ) ) = 

{
p ∗(z, λ) 2 σ 2 (z) if z ≤ z p max 

, 

p 2 max σ
2 (z) if z > z p max 

. 

For any given stock factor z the derivative of these two func-
ions are: 

∂ 

∂λ
E ( �∗(z, λ) ) = 

{ 

∂ p ∗(z, λ) 

∂λ
( μ(z) + a + b ( c − 2 p ∗(z, λ) ) ) if z ≤ z p max 

,

0 if z > z p max 
.

∂ 

∂λ
V ar ( �∗(z, λ) ) = 

⎧ ⎨ 

⎩ 

−
2 

(
σ 2 (z) 

)2 

λσ 2 (z) + b 
p ∗(z, λ) 2 if z ≤ z p max 

, 

0 if z > z p max 
. 

For z ≤ z p max , λσ 2 (z) + b ≥ 0 and p ∗( z , λ) > c . There-

ore ∂ p ∗(z, λ) / ∂λ = −σ 2 (z) p ∗(z, λ) / ( λσ 2 (z) + b ) ≤ 0 . Per (4) ,

(z) + a + b ( c − 2 p ∗(z, λ) ) < 0 in risk-seeking cases, and we

onclude that the expected profit for a given stock factor at the

edged optimal price does not decrease with λ (i.e. as λ decreases,

he expected profit does not increase). Also, ∂Var ( �∗( z , λ))/ ∂λ≤ 0
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