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Abstract 

Two-person zero-sum stochastic games with finite state 
and action spaces are considered. The expected average 
payoff criterion is used for multichain structures. In the 
special caae that only one player controls the transitions, 
it is shown that the optimal stationary policies and the 
value of the game can be obtained from the optimal solu- 
tions to a pair of dual linear programs. A decomposition 
algorithm is given which produces such optimal station- 
ary policies for both players. In the case that both players 
control the transitions, a generalized game is obtained, the 
solution of which gives the optimal policies. 

1 Introduction 
In this paper we investigate the optimal policies for a two-person 
zero-sum stochastic game (SG) that was first introduced by Shap- 
ley (171. The game is played seqiientially. At each epoch, the game 
is in one of finitely many states and each player observes the cur- 
rent state and chooses one of finitely many actions. The state 
of the game and the pair of actions determines:(;) a payoff to be 
made by player I1 to player I; (ii) the probability distribution over 
the states of the game, which provides the transition probabili- 
ties to the next state of tlie game. Stochastic games generalize 
Markov decision processes, in that MDPs may be viewed as SGs 
in which one of the players has only one action in each state. 

An objective function is defined depending on the evaluation 
of the payoffs. In a giniic:, player I tries to maximize its gain 
while player I1 tries to ininiinixe its loss. Shapley 117) considered 
the game with discoilntcd payoffs and proved that this game has 
a value and that both players have optimal stationary policies. 
Hoffman and Karp [lo] studied the long-run average payoff crite- 
rion and proved that the game has a value if the transition matrix 
of each pure policy pair is irreducible. If R, denotes the payoff 
a t  epoch m E N+, then the long-run average expected payoff to 
player I is defined as 

1 "  
W V )  := linm_lf; Eu,v[&l, 

m=l 

where the expectation is taken with respect to each player's policy. 
The problem of which games have a value is solved by Mertens and 
Neyman (141 who show that every stochastic game has a value, 
i.e., 

supinfb(u,v) = infsup4(u,v). 

The average expected payoff problem has also been studied by 
other authors [l], (51, (111. In general, there do not exist optimal 
policies for both players [3]. Bewley and Kohlberg 12) give suf- 
ficient conditions for the existence of stationary optimal policies 
for both players. They show that if SG is unichain or if only one 
player controls the transitions, then there exists optimal station- 
ary policies for both players. Kallenberg [12] study the case when 
one player controls the transitions and give an algorithm to locate 
the optimal stationary policies. This case has also been studied 
by other authors [6],[7], [8], (91, [15]. 

We consider the ezpected average criterion (Bewlcy and Kohl 
berg define it as limit average criterion [2]), 

u v  v u  

Bewley and Kohlberg [2] prove that if there exist optimal sta- 
tionary policies for the long-run average expected payoff criterion, 
then these policies are optimal for the limit average criterion. In 
this paper first, we show in the special case that only one playcr 
controls the transitions that optimal stationary policies and the 
value of the game can be obtained from optimal solutions of a 
pair of dual linear programs. This problem is considered for mul- 
tichain SGs. The decomposition approach is used in developing 
tlie algorithm to locate optimal policies. For the general case 
that both players control the transitions, we obtain a generalized 
game. If a solutioii exists for this game we can locate optimal 
stationary policies for both players in the unichain case. 

Section 2 presents tlie stochastic game model with some nota- 
tions and definitions. In section 3 we study the case of one playcr 
controlling tlie transitions and give a decomposition algorithm to 
locate the optimal policies. In section 4 we discuss the games 
with both players controlling the transitions. 

2 Stochastic Game Model 
Let { X , }  denote the state process of the two-person zero-sum 
game, taking values from a finite state space S .  After observing 
the state of the game at epoch m each player chooses an action 
from a finite set of actions. Let {A,} and {B,} be the seqiience 
of actions taken by player I and player 11, respectively. Let A and 
B denote the set of available actions for player I and 11, respec- 
tively. 

Player I1 pays player I a payoff & = r (X, ,  A,, D,) at each 
epoch m. At any epoch if the system is in state z E S , player 
I clioses action a E A and player I1 choses action b E B , a 
payoff of r(z,a, b) is earned. It is assumed that the payoffs are 
nonnegative and finite. By the time homogeneity assumption the 
next state of the game depends only on the present state and 
actions. In particular, when the system is in state z E S a t  
epoch m and actions a E A and b E B are chosen by player I 
and 11, respectively, then the state at epoch m + 1 is y E S with 
transition probabilities P2.b, statisfying 

~ P z o b = l ,  Pz+>O, t / z , y ~ S ,  a c d ,  b E 8 .  

PI+, is refered to as the law of motion and assumed to be known 
to each player. 

The probability space that supports the process {X,, A,, B, : 
m E N+} is defined as follows. The underlying sample-space is 
0 := {S x A x €3 }", so that a typical realization w E 51 is repre- 
sented by w := (21, al, bl, 2 2 ,  02,  b2, .  . .). Let 51 be equipped with 
the a-algebra 3 generated by the random variables {X,, A,, B, : 
m E N+}. 

A decision rule U"' (respectively vm) at  epoch m for player 
I (respectively 11) is a mapping from {S x A x B }"'-I x S to 
the set of all probability measures on A (respectively B ). Let 
ur(z1, .  . . ,z,) ( respectively v r ( . q , .  . . ,z,)) denote the condi- 
tional probability of choosing action a (respectively b )  at epoch 
m given the past history (21,. . . , 2,). A policy for player I (re- 
spectively 11) is denoted by U (respectively v). 

U 
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Let E S be a fixed initial state known to the players. Policies 
chosen by each player U and v induce a probability measure PU,V 
on (a ,  7)  through the following equations: 

PU,V{Xl = 0 = 1, 

Pu,v{A, = alX1 = 21,. . . , X ,  = z} = uT(z1,. . . ,z), 
Pu,v{B, = b(X1 = 21,. . . ,X, = Z}  = v P ( z ~ ,  , . . ,z), 

PU,V{X,+~ = ylXl  = zl,. . . ,X, = 2, A, = a,  B, = b}  = Pzob. 

Stationary policies f and h for player I and 11, respectively, 
are vectors with components 

uF(z1, ..., z ) = f z o  ' i"EN+,  
V r ( 2 1 , .  . . , Z )  = hzb v m E N+. 

Let C' and Cg(Cz, Cg) denote the set of all policies and stationary 
policies for player I ( 11). Under policies f E Ci and h E Ci for 
player I and I1 respectively, the state process {X,} is a Markov 
chain with transition probabilities 

Pzv(f,h) = ~ z o b y f z o ~ ~ z b ~  

o E d  b d  

Define the random variables, 

Under stationary policies f and h the process {Y, = (X,,A,, 
Bm)}z=, is also a Markov chain, thus, 

1 "  
W ( z , a ,  b )  = ,hJi; l(Xm = 2, Am = a,  B, = b )  

m=l 

exists Pf,h-almost surely for all z E S , a E A and b E U . 
A stochastic game is said to be unichain if the Markov chain 

induced by each pure policy pair (gl,g2) is unichain. Let P(f, h)  
denote the transition matrix induced by stationary policies f and 
h for player I and I1 respectively. If P ( f ,  h )  is unicliain, then there 
exists a unique probability vector r ( f , h )  = {z,(f,h) : z E S } 
independent of initial state. 

The long-run average reward of player I is given by 

If { W , ( z , a , b ) }  converges for all z E S, a E d and b E U to 
random variable {W(z ,  a, b)} Pu,v-almost surely, then 

R = ~ ( 2 ,  a ,  b)W(z, a,b) ,  (2) 
+,oP 

Pu,v-dmOSt SUI€$'. 

Player I maximizes his expected reward while player I1 mini- 
mizes his expected loss. Hence, the problem is to find policies U' 
and V* such that 

$(u,v*) 5 $(U*'V*) I $(u*,v), 

where $(u,v) is the expected average reward under player 1's 
policy U and player 11's policy v, i.e., 

$(u,v)  := &,v[Rl. 

If u*,v* satisfy the above equation then U* and V* are called opti- 
mal policies for player I and player 11, respectively. And $(u*,v*) 
is called the value of the game. It is straightforward to prove the 
following proposition. 

Proposi t ion 1 Let f E Ci and h E Ci and let 7Z1(fl h), . . . 7Zp( 
f ,  h )  be the recurrent classes induced by P(f, h). Denote {rf(f  h) : 
z E R'( f ,  h)} for the equilibrium probability vector associated with 
class i, i = 1,. . . , p .  Let 

7 := min{m : m E N + , X ,  E q=lR'(f ,h)}.  

Then, 

.L(f, h)fzohzb. 

I f  the game is unichain, then 

3 One Player Controlling the Transi- 
tion Probabilities 

We will first investigate a special case, where the transition prob- 
abilities are assumed to be independent of the player 11's actions. 
We consider tlie problem of finding the value of the game and lo- 
cating the optimal stationary policies for both players. Through- 
out this section the following assumption holds. 

Assumption: The transition probabilities P,,b do not depend 
on b for all z , y , a ,  i.e.,  

Pu,v{X,+~ = ylXl  = q,.. , , X m  = z,A, = a, B, = a} = PSw. 

This condition implies that transitions are influenced by player 
1's policy U and the components of the transition matrix under a 
stationary policy are given as 

P z y ( f ,  h) = P..Uf~Ohls = P,(f), 
0.b 

which is independent of second player's policy. 
Remark:  For f E Ci and h E Cg and the recurrent classes 
induced by P( f ) ,  R1(f),  . . . , RP(f), the ezpected average payofis  

P 
$(f, h )  = pf{xT E R'(f)) r(z,,a,b)d(f)froh+b. 

i=l =cRi(f) oEAbE8 

If the game is unichain, then 

$( f ,h)  = r (z ,a ,a)* . ( f ) f . .b .O 
+E o c d  MB 

By the above assumption, one can define the strongly commu- 
nicating class depending only on the law of motion as 
follows: 

Definition 1 A set of states C is a strongly communicating class 
if 

(i) There ezists a stationary policy f such that C is a recurrent 

( i i )  C is not a proper subset of some set D which also satisfies (i). 

The optimal policies for player I and I1 shall be constructed US- 

ing this decomposition approach. The stochastic game is first re- 
stricted to each of the strongly communicating classee C', . . . , CP. 
Each restricted game corresponds to a pair of d u d  linear pro- 
grams. Based on the value of the restricted game an aggregated 

class for the associated probability transition matriz P(f ) ,  
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game is constructed. Since the maximizing player controls the 
transitions, the aggregated game corresponds to a maximum av- 
erage reward MDP. An optimal stationary policy for player I is 
then obtained by combining the optimal policy for the aggregated 
game with the optimal solutions for the restricted game. The op- 
timal policy for player I1 is obtained from the restricted game. 

3.1 The Restricted Game 
For each i = 1, ..., 8 and z E c', define the set Fa = { a  E 
A : Pzov = 0 for all y $ C'} as a subset of A ,  player 1's actions. 
Then the restricted game S G i  is defined as follows: (i) the state 
space is C'; ( i i )  the action space for player I is Fz for z E C', 
the action space for player I1 is B ; (iii) Pzou and r ( z ,  a ,  b) are 
restricted to the state space c' and action spaces F., B. 

For a fixed SG-i and a fixed initial state ( E c', each pair 
of policies (u ,v)  induces a probability measure P& on (0 ,F) .  
The corresp,onding expected average payoff for SG-i is given by 

To this end, we first define the restricted game. 

1 "  
#(u,v) := E&[linm_%f - r(Xm,Am,Bm)]. 

m = i  

For each SG-i, consider the following pair of dual linear pro- 
grams. 
Program Ql 

(3) T i : =  max T~ 

.E C' 

2E CSOfF' 

2E c'0EFi 

- 

z., 2 0, V z E C', a E F 

8.t. e ,  (82, - ~.0&.0 = 0, v Y E c' (4) 

(5) 

r ( z ,  a ,  b)zza + 7. I 0, V b E B , z E C'(6) 

1.0 = 1 

.€Pi 

(7) 

Program Qi 

c8,(b) = 1, V z  E c' 
b 

s2(b) 2 0, V z  E c', b E 13 

Remark: Program 

Theorem 1 Let f' denote a stationary optimal policy for player 
I and let h' denote a stationary policy for player U. For each 
i = 1,. . . , 8  and U E c', v E c2 

maximizes E,, ci x o , F =  r ( z ,  a ,  b)zz0.  

Pu,h'{l;n".fR~lr(Xm,Am,Bm) 1 "  I T'I6.i) = 1, 

1 "  
p f * , v ( l i ~ ~ ~ P  r(Xm, Am, B m )  L U'IO;} = 1, 

m=l 

f i r t h e r " ,  for a stationary policy h for player ZI we have 

1 "  
pf*,hQ:% r(Xm, Am, Bm) 2 U'lQi) = 1 

m=l 

Proof: Let 

1 "  
Wn(Z,a ,b)  := - l (Xm = z,A, = a , B ,  = a), 

m=l 

1 "  Zn(z, a )  := - l (Xm = 2, A, = a). 
m=l 

By compactness properties there is a subsequence {Nk(W)} 
along which the limits W ( z , a , b ; w )  and Z ( z , a ; w )  exist, 

lim W ~ * ( z , a , b )  = W ( z , a , b ) > O ,  V Z E S , ~ E A , ~ E B ,  
L-m 

lim ZN,(z ,a)  = Z ( z , a ) > O ,  V Z E S ,  a E d .  
k-m 

Let 

Fix a policy U E C' and i = ( 1 , .  . . , s } .  Assume that player 
I1 uses his optimal policy h' E C.$ Clearly 

E h z b = 1 ,  h z b L 0 ,  V z E S ,  b E B .  

Let r be the set of all sample paths w = ( q , a l , b 1 ,  . . . ,) that 
satisfy 

b 

(i) an E 3.. for all n 2 N ,  for some N E hf, 
(ii) c,,S Coed ptouz(z, a; 0) = EOEA z(Y, a; W )  for all I E S 
(iii) W(Z, a ,  b; W )  X b Z ( 2 ,  U ;  W )  

By the Strong Law of Large Numbers for Martingale Differ- 
ences (e.g., see [13]) and the property that Pu{A, E Fx, a.a.} = 
1 for all U E C', 

PU(r) = 1. 

Since U and h' are independent and 

Ph*{Sz(b) = hzb} = 1, 

we have, 
pu,h*(r) = 1. 

we want to show that all sample paths in the intersection of r 
with the set 6' = {X, E c' a.a.} satisfy 

liminf-er(X,,A,,B,) 1 "  I T', 
n m  n+m 

i.e., 
8; n r c { h k f  - 1 "  C r(Xm, A,, B,) I Ti}. 

m=1 

On the set 6i n I' 

W ( z , a , b )  = 0 V z #  C ' , a # F .  
Z(z,.) = 0 V z #  C ' ,a#F, ,  

c c Z(z7.) = 1, 
giving 

c' O € F .  

PzouZ(z ,a)  = Z ( y , a ) ,  VY E c'. 
OEF" c'0EF. 

Thus, Z(z,  a )  satisfies primal conditions over the set Q; n r. 
Hence from the primal program (9) we have 

(12) c f ( 2 ,  a, b)Z(z, a)h:b I T i ,  
2~ c' OEF* b E B  

on ai n r. On the other hand 
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- 
= c r(z,a,b)Z(z,a)h;b holds. 

,E Cia€/* b& 
Using the definitions of z, = Ea 2.. and 1; = { z  E C' : zz > 

O}, one can construct stationary policies for SG-i by an algorithm 
similar to the one given in [I21 

holds over the set ai n I'. When combined with (12) gives the 
result. 

Now fix a policy v E Ca for player I1 and i = (1,. . . , U } .  

Assume that Player I uses his Optimal P 0 h  f' E cia Let I' 
denote the set of all sample paths w that statisfy 

Algorithm 1: 

1. Fil,d optimal solutions z* = {zfa} and = {a:(b)} for the 
above pair of programs. 

2. Define lis := 

3. Define f:: := % if z E Zj. 
4. Set E = I:. 
5. While E # c', Do: 

if z E c'. ( i )  a, E FE" for all n 2 NI for some N E N. 
( i i )  &A PzayZ(2, a; w )  = &A z(Y, 4;  w )  for Y E s * 
(iii) W(z, a,  b; U) = x,(f.)fzaS,(b; U) 

Clearly 
Pf.,"(r) = 1. 

On the set 'Pi n I' 

W ( z , a , b )  = 0, V Z  $! c', a @ 7, 
&(a) = 0, v z  $! C', 

e Choose a triple (2, a, ,y )  such that z E C' - E ,  Y E E, 

e Set f:t* = 1; and Set E = E U {z}. 
a E 7. and Pz0.,, > 0. 

6. Continue. 
giving 

&(a) = 1 v z  E c'. Theorem 2 The stationary policies t" and h" are optimal for 
SG-i, for all 6 E C'. 

Proof: For a unichain transition matrix 

b E u  

Since zh = ~,(f') f& satisfies the condition (4) and &(a) satisfies 
dual condition (13) we have from (12), 

c ~ ( 2 ,  a, b)z.LSz(b) I 'P + (szy - Pzoy)Z:aty 
=,o,b 

tio = rz(P)fl;, v z  E c', a E 3.. 
+,O.Y 

Also u:(b) = h$, for all z E C'. Since z:, and u:(b) are optimal 
for the pair of mathematical programs, respectively, Ti = U' 
holds, giving 

= p. 

Thus, dual program minimizes Zz,a,b r(z, a, b)z:,S.(Q), giving 

When second player uses stationary policies h, then the limit 
below exists also on the set n I' 

. n  

Hence, giving 

By Corollary 1 we have 

@*((U, h*') 5 Ti ,  

@((f'', h) 2 r'. 
and 

We have 

Since if one of the players uses a stationary policy, the problem 
for the other player becomes a MDP a . d  it is well known that 
in this case there exist a stationary optimal policy, thus implying 
that it is enough to consider the optimization problem over the 
stationary policies [12]. Hence (13) implies the result0 

3.2 The Aggregated SG 
Consider the aggregated game, where there is one state corre- 
sponding to each strongly communicating class C' plus states cor- 
responding to the transient states 7. For each state i = 1 , .  . . , a, 
the action 8 is available, which keeps the system in state i with 
probability 1. Since only the maximizing player controls the tran- 
sition probabilities, the actions of the form (z,a;) are also avail- 
able, so that the original game moves to state z and player I 
chooses action a $ F.. Thus the aggregated SG is defined so that 
the state space is = (1, .  . , , a  + t }  where t denotes the car&- 
nality of the set 7, the state-dependent action spaces for player 
I are 

Corollary 1 Let f' denote the stationary optimal policy for 
player Z, and let h' denote the stationary optimal policy for player 
II. For each SC-i, initial state 4 E C', policies U E C' and 
v E C', h E Ca 

1 "  
<,h*{Ih$;; C t(Xm,Am,Bm) < T') = 1, 

-151 

1 "  
pft.,v{lim~~p ; r(Xm, Am, Em) L fi) = 1, 

n-OD m=l 

$.,h{>>i ; 1 "  mql v(Xm9 Bm) 2 U') = 1, 
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A, = { e } u { ( c , a ) : e E  C ' , a $ F z } i E S , 1 5 i < s  
A¶ = A s + l l i l s + t  

the action space for player I1 is B , and the law of motion is 
defined accordingly. The average reward for  the aggregated game 
given that the initial state is i E s is defined as, 

and the optimal pay05 for  the aggregated game is 

,8' = sup,8;(u). 
UEC 

An optimal pure policy g can be found for the aggregated 
game. The optimal pure policy g of player I moves the game 
through state space S .  Hence, if g(i) = B then, it is best to 
play the restricted game SG-i once it has entered the strongly 
communicating class Ci. But if g ( i )  = (e, a ) ,  then playcr I moves 
the original game to state c and then chooses action a. 

We can construct the stationary policies as follows. The sta- 
tionary policy h for player I1 is obtained by setting 

h i  i f z E  c', 
h'b = { 1 for arbitrary b for c E 7. 

And stationary policy f' for player I can be obtained from the 
algorithm given in [l]. The following Lemma is stated with- 
out proof, since the proof is essentially the same as the proof 
of Lemma 3.11 in (171 

Lemma 1 The stationary policy f' constructed by the algorithm 
is optimal f o r  the intermediate problem. Moreover, i f  i is a recur- 
rent state under the pure policy g in the aggregated SG, then C' 
is closed and contains ezactly one recurrent class under P(f*); i f  
i $ HI then 

Pf. (a i )  = 0. 

Theorem 3 The stationary policies f' and h' are optimal for  the 
original problem. 

Prool: From Proposition 1 

But from Lemma 1 and Theorem 1 

U 

4 General Stochastic Games 
In this section we investigate the stochastic game where both 
players control the transition probabilities. We assume that the 
Markov chain generated by each stationary policy pair (f,h) is 
irreducible, i.e., there is only one recurrent cl&s with no transient 
states. 

Assume that player I uses a stationary policy f ,  then the payoff 
earned from player I1 is 

fzb(f) := c "(2, a ,  b ) f m ,  
a 

and the transition probabilities determined by player I1 is 

Pzb(f)  := pzatq,fza. 
a 

Then, player I1 will try to minimize his loss, which gives rise to 
the following mathematical program 

min rzb(f)Uzb 
=,b 

8 . t .  cPzby(f)Vzb = v y  E s 
4 b 

z v z b  = 1, 
2,) 

V , b > O ,  V Z E S ,  b E B .  

Now let 
&a 

fia = 
with x,. 2 0, and E, z,, = 
the following minimax problem. 

WO) for all c E s . And consider 

(15) 

&a = %by v 2 E s (16) 

c % b  = 1, (17) 

pzabyA%h = c v z b ,  v y E s 
z,a,b Ea b 

a b 

2,) 

uzb20 ,  ~.,20, V Z E S , ~ E ~ ,  6 6 8  (18) 

Along the same lines of proof of Theorem 1, one can prove 

Theorem 4 Let f' E Ci and h' E Ci be optimal policies for 
player I and 11, respectively. Then for  all policies f E Ci and 
h E Cl: 

1 "  
Pf,h*{liE&f; c r(Xm, A m ,  Bm) I T} = 1. 

m=l 

Theorem 5 Suppose that {&} and {uk} are solutions to  the 
static game. I f f '  and h' are obtained through the transformations 

j;={ * if %*(e) = E,, z * ( z , a )  > 0 
arbrtrary but fA > 0,Va E d, otherwise 

if ~'(2) = Cbu*(z ,b)  > 0 { arbitrary but hL > 0,Vb E B, otherwise 
hib = 

then they are optimal for the stochastic game. 

184 



Proof: From the constraints we have 

U+) = Z*(Z), 

CU'(2) = 1, 
z 

U * ( Y )  = Pz&U*(Z, b)fza = P+(f')h:bv*(z)  

= P Z y ( f . ,  h*)u*(z). 
=,a$ 2.b 

I 

Since there exist a unique probability vector associated with 
P(f', h*), these equations imply that 

~.(f., h') = v*(z), V z E S . 
Thus, we have 

1 "  
li,p+&f ; r(Xm, A,, B,) = ~ ( 2 ,  a,  b ) ~ , ( f * ~  h')f;,,hib 

m=l v , b  

The result follows from Theorem 1 0  
Thus, we can obtain optimal stationary policies for both play- 

ers from the static game, if this minimax problem has a solution. 
Remark:  Note that in this minimax problem tlic policies of piay- 
ers are not independent. A game with this added constraint is 
called generalized game[4]. 
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