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Abstract The purpose of this research is to provide a faster and more efficient method to determine traffic

density behavior for long-term congestion management using minimal statistical information. Applications

include road work, road improvements, and route choice. To this end, this paper adapts and generalizes

two analytical models (for non-peak and peak hours) for the probability mass function of traffic density

for a major highway. It then validates the model against real data. The studied corridor has a total of 36

sensors, 18 in each direction, and the traffic experiences randomly occurring service deterioration due to

accidents and inclement weather such as snow and thunderstorms. We base the models on queuing theory,

and we compare the fundamental diagram with the data. This paper supports the validity of the models for

each traffic condition under certain assumptions on the distributional properties of the associated random

parameters. It discusses why these assumptions are needed and how they are determined. Furthermore,

once the models are validated, different scenarios are presented to demonstrate traffic congestion behavior

under various deterioration levels, as well as the estimation of traffic breakdown. These models, which
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account for non-recurrent congestion, can improve decision-making without the need for extensive datasets

or time-consuming simulations.

Keywords Random Queues · Traffic Density · Recurrent Congestion · Non-Recurrent Congestion · Traffic

Breakdown

1 Introduction

In recent times, population growth, economic growth, and lifestyle changes have increased the demand

for traffic infrastructure at an unprecedented rate, outpacing improvements to infrastructure. In turn,

the rate of congestions and delays has increased, directly affecting millions of people worldwide. Even

the introduction of autonomous vehicles may not curb congestion due to high demand unless policies are

developed to encourage ridesharing or improve flow management. While traffic congestion and breakdown

caused by excess cars during peak hours are common, other types of congestion have started to become

more pervasive. This type of non-recurrent congestion and breakdown is a significant contributor to the

total delay of vehicle travel time [Skabardonis et al., 2003, Kwon et al., 2006]. The two main factors that

cause non-recurrent delays are weather deterioration and accidents that affect the capacity of the road.

They account for well over half of the non-recurrent delays in urban areas, and nearly all non-recurrent

delays in rural areas [Skabardonis et al., 1998].

This problem becomes increasingly ubiquitous as the worldwide population grows and concentrates

[Thakur et al., 2012]. Unfortunately, transportation infrastructure investments are still lagging, putting

pressure on those responsible for planning transportation systems [Schrank et al., 2015]. Severe travel

delays are frequently the result of the inappropriate planning of transportation systems [Chiou, 2016]. Poor

planning may cause insufficient provision of link capacity, particularly under uncertain travel demand and

with the arrivals of non-recurrent incidents. Such issues need to be accounted for in roadway designs, even

when it is infeasible to gather the appropriate data. Therefore, transportation investments must be carefully

considered to help alleviate congestion and prevent future traffic problems.

This paper aims to address the critical need for analytical congestion assessment methods that are

neither overly simplistic nor excessively complex. The proposed method uses simple, usually on hand pa-

rameters to describe the probability mass function of the traffic density analytically, while still accounting

for non-recurrent incidents. The parameters are: a) mean traffic flow under normal and deteriorated con-
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dition, b) mean speed under normal and deteriorated conditions, c) incident frequency, and d) clearance

time, to estimate the probability distribution of traffic density.

Based on the previous literature [Baykal-Gürsoy and Xiao, 2004, Baykal-Gürsoy et al., 2009a,b], we

extend their model and validate their approach against a real dataset. Although they derive the distribution

of density in closed-form, its computation is nontrivial. Few properties of the distribution can be directly

derived from its complex closed-form, limiting its application. However, in realistic scenarios, we can place

reasonable bounds on the parameters, leading to a simpler closed-form distribution. The properties of the

resulting distribution can then be directly computed and have an intuitive meaning, allowing decision-

makers to attain a better understanding of the behavior of the system. Moreover, Baykal-Gürsoy et al.

[2009b] validate the models against simulated data using Paramics®, and INTEGRATION; not against

real data. This paper also addresses this gap by validating the model against data obtained from a Wisconsin

highway traffic dataset.

This mathematical framework can answer questions such as 1. How much would a change in traffic

behavior impact traffic congestion? 2. How can we estimate the probability of traffic flow breakdown on roadways

when minimal data is available? Moreover, this model explains how the probability of traffic breakdown

changes according to the changes in traffic parameters, and how improvements on the road clearance time

impact congestion. Tables 4 and 5 provide a few examples of how we can derive the probability from this

model. This method, therefore, simplifies and improves the assessment of non-recurrent traffic density and

its variability, leading to a reduction in congestion.

Despite some prior work present in literature, to the best of our knowledge, there is not an agreed-

upon steady-state probability distribution for traffic density subject to non-recurrent congestion. Early

work established in the literature largely depends on extensive simulation [Muñoz et al., 2003, Daganzo,

2006]. Recent research that includes non-recurrent congestion focuses on detecting incidents rather than

computing the steady-state distribution [Anbaroglu et al., 2014, Chen et al., 2016, Laharotte et al., 2017].

Mathematically, they work on the transient portion of congestion behavior, thus focusing on real-time

applications instead of planning and long-term decision-making. Hence, there is a gap in the literature for

direct approaches to computing the steady-state distribution of traffic density that do not require simulation

or extensive datasets and account for recurrent and non-recurrent congestion.

In section 2, we discuss current approaches to describe the behavior of traffic density from literature.

In section 3, we present the data used in the validation of the traffic density distribution models. In section

4, we introduce an adaptation and an expansion of an existing model that demands minimal statistical
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information that is usually known or can be easily approximated. The adaptation of the model provides a

simple closed-form alternative for most scenarios during non-peak hours. The expansion provides solutions

for a general case that includes recurrent and non-recurrent deterioration for both peak and non-peak

hours. We perform a validation using data in section 5 to demonstrate the modeling performance. It uses

the initial assumption that only the aggregate parameters, and not the data were initially known, then

compares the predicted results with the actual data. Suggested applications are discussed in section 6.

2 Background

2.1 Congestion Forecasting

Several authors have derived solutions for the steady-state congestion problem. However, most current

approaches face at least one of several shortcomings:

1. they require large datasets — and therefore are expensive or infeasible in most situations;

2. they lack a closed-form solution — and therefore require extensive computation;

3. they provide expected results, instead of full distributions — and therefore do not provide the full

picture of the density behavior;

4. they do not account for non-recurrent congestion — and therefore lack robustness.

The traditional methodology for traffic modeling was introduced by Lighthill and Whitham [1955] and

Richards [1956], which approximates traffic as a deterministic fluid governed by a conservation equation

relating the flow, speed, and occupancy, the so-called the kinematic wave equation. While these initial

models were powerful for modeling the emergent behavior seen in real traffic, they were mathematically

cumbersome. Later models, like Newell [1993], made modifications that can accurately model traffic density

with fewer technical complexities. However, these models are only capable of providing the expected flow

parameters, not their distributions. Daganzo [1994] introduces the Cell Transmission Model (CTM), a

numerical method to solve the kinematic wave equation. He also demonstrates that the CTM can analyze

non-recurrent incidents behavior on a scenario-by-scenario basis by temporarily altering initial conditions

or parameters. The Switching-Mode Model, proposed by Muñoz et al. [2003], describes an extension of the

CTM with time-varying parameters. Their approach consists of multiple sets of CTM update parameters,

each representing different congestion levels. These are then switched between, to model the effect of

changing traffic conditions. The usefulness of this multiple-scenario approach is well demonstrated by the

authors, but it does not provide the distributional information of the traffic density.
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An alternative approach divides traffic into much smaller sub-units, usually at the scale of a single

vehicle. Car-following models, like the Intelligent Driver Model proposed by Treiber et al. [2000], require

extensive knowledge of driver characteristics. These data are often costly or infeasible to gather, preventing

the modeling of large or multiple studies. This shortcoming is particularly relevant in the planning of new

areas where infrastructure does not exist. Cellular Automata models like Nagel and Schreckenberg [1992]

do not have the same data requirements, and Daganzo [2006] shows that they converge to the solutions

of the original formulation by Lighthill and Whitham [1955]. The Cellular Automata models, as well as

the CTM proposed by Daganzo [1994], can be stochastic, allowing traffic engineers to characterize the full

distribution. Doing so, however, would require extensive simulation.

Part of the literature focuses on finding the probability of traffic breakdown. Traffic breakdown is

triggered when a substantial speed decrease from the free flow speed is detected between two consecutive

time intervals. This speed decrease drastically increases density, hence causing a sudden plunge in capacity.

Kerner et al. [2002] adapt the original Cellular Automaton model to derive a theoretical probability for a

spontaneous breakdown. With the further popularization of Cellular Automata models by Maerivoet and

De Moor [2005], the concept of using simulation became a constant for the problem of finding the probability

of traffic breakdown. With time, other variations have surfaced, such as the Monte-Carlo simulation model

proposed by Dong and Mahmassani [2012]. Its novelty was the combination of a stochastic approach to

macroscopic flow breakdown with a microscopic model of driver behaviors. However, these models face

similar shortcomings — they require extensive computational resources and complex detailed data. Hence,

probabilistic closed-form solutions for this problem have recently resurfaced in the literature [Arnesen and

Hjelkrem, 2018, Han and Ahn, 2018]. Even then, the solutions proposed are limited for planning purposes,

as they provide little direction for the decision-maker and still require complex data information. On the

other hand, a full density distribution both allows for direct computation of the probability of traffic

breakdown. It equips decision-makers with additional valuable information on the significance of different

traffic parameters for breakdown and congestion.

Lately, authors have started employing new technologies to collect data for traffic density estimation.

Zhang et al. [2017] develop a model to analyze traffic congestion through image processing or computer

vision; Panichpapiboon and Leakkaw [2017] propose using cars as mobile sensors to generate data. This

influx of data has been a boon for recent research in traffic congestion for dynamic systems, enabling machine

learning approaches to arise. These models divide roadways into segments observed in discrete time units

and either forecast traffic flow patterns [Celikoglu, 2014, Celikoglu and Silgu, 2016], or directly forecast the
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traffic state [Polson and Sokolov, 2017] for some time horizon. Although most employ common variations of

traditional traffic metrics (flow and speed), there is still no consensus in the literature regarding the most

appropriate input for ML-based classifiers of traffic state. In addition, to the best of our knowledge, no

literature has implemented machine-learning-based predictive models that directly use density as the output

parameter. While these methods are promising for the future of traffic modeling, they are not well suited for

planning applications. Typical solutions provide only expected values, and their accuracy decreases as the

forecast horizon increases. While these advantages are compelling for real-time traffic monitoring, they do

not transfer over to planning applications where these datasets are unavailable, and long-term distributional

predictions are needed.

Finally, few papers have addressed non-recurrent incidents in their analysis of long-term behavior, even

though they are a significant contributor to the total delay of vehicle travel time and traffic breakdown

[Skabardonis et al., 2003, Kwon et al., 2006]. Baykal-Gürsoy and Xiao [2004] and Baykal-Gürsoy et al.

[2009a,b] propose a model using queuing theory that accounts for non-recurrent congestion. They depict a

segment of a roadway as two-state finite or infinite queues. The next section introduces stochastic queue-

based traffic models.

2.2 Stochastic Queuing Models

A theoretical framework used by some authors to predict congestion is queuing theory. Queuing analyses,

together with deterministic (fluid-dynamics) models [May and Keller, 1967, Newell, 1971], are primarily

used for performance evaluation purposes and the synchronization of traffic lights [Newell, 1965]. Early

stochastic models assumed individual vehicle arrivals to follow a Poisson process [Zheng and Liu, 2017,

Wang and Ahmed, 2017, Gazis, 2006, J.N. Darroch and Morris, 1964, Tanner, 1953], or as platoons of

vehicles [Daganzo, 1994, Alfa and Neuts, 1995, Dunne, 1967, Lehoczky, 1972] to represent the behavior of

cars moving between traffic signals.

Cheah and Smith [1994] and Jain and Smith [1997] studied stochastic queues to explore the usefulness

of finite server queuing models with state-dependent travel speed for modeling both pedestrian and vehicle

traffic flows. In this model, vehicles arrive according to a Poisson process, and the total time to traverse the

corridor is assumed to follow a general distribution. If the roadway is at capacity, new arrivals must take

an alternative path. Consider vehicles traveling on a corridor, as depicted in Figure 1. The space occupied

by one individual vehicle represents a moving server. The service cycle initiates when a car arrives at the
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corridor, and service (the act of traveling) is provided until the vehicle leaves the corridor. A server in

this context is the moving vehicle-space, including the safe distance (space headway) to the car in front.

The number of available servers is then the maximum number of vehicles that the corridor can physically

accommodate. Consequently, when there is no space left for a vehicle to enter, i.e., all servers are full, the

vehicle either is allowed to wait in a queue or is denied service [Cheah and Smith, 1994, Jain and Smith,

1997]. Other authors [Heidemann, 1996, Vandaele et al., 2000, Heidemann, 2001] studied a similar system

but with a single server and infinite queuing capacity. Such a flow model is considered as a vertical queue

that disregards the interdependence between vehicles within the same cell [Daganzo, 1994]. Although some

of these models focus on congestion, none of them include the occurrence of non-recurrent incidents as part

of the model.

Fig. 1: Graphical depiction of a two-lane roadway segment.

The queuing model proposed by Baykal-Gürsoy and Xiao [2004] and Baykal-Gürsoy et al. [2009a,b] is

the only one that considers non-recurrent congestion.

3 Measuring Traffic Data

In this section, we provide one example of how one may assess the congestion problem with real data. Data

were collected from Wisconsin via 36 sensors in a 9-mile stretch, 18 on each side of the road (South-East

and West-North Directions). Those sensors are inductive loop detectors embedded in the roadway. Figure

2 shows the roadway where data were obtained.

The sensors record three common indicators used in traffic models: speed, flow, and density. Density

represents traffic congestion, counting the number of vehicles occupying a particular space unit at a specific

time. Flow counts the number of vehicles passing through a certain point per unit time. Density, speed,

and flow are closely related, as increasing flow also increases density initially. However, when more cars

arrive than the highway can hold (surpassing the maximum flow), density keeps increasing while flow

decreases. The limit of the relationship occurs when traffic is down to a complete stop, and flow is thus
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Fig. 2: Map from where data were collected.

zero, hence representing the complete breakdown of traffic [Daganzo, 1994]. Figure 3 represents a partial

view of these relationships and showcases Milwaukee’s data that this paper uses for validation. Most current

data-gathering techniques cannot measure density directly but obtain speed, occupancy, and volume from

which traffic density can be calculated [Kurzhanskiy, 2009]. Occupancy is a proxy measure for density. It

gives the percent coverage of the sensor per unit time, while volume is a proxy measure for flow, when the

period analyzed is divided into equally spaced time intervals. In this section, we describe the methods used

to compute density given speed, occupancy, and volume.

The sensors analyzed provide occupancy measures for half-mile segments. In this paper, we consider

an average car length plus headway of 22 ft, obtained through the procedure described in Dailey [1999].

We use ordinary least squares to find the best fit for the average car length plus headway. The number of

cars, namely density, is then given by a simple ratio of occupancy times the length of the segment by the

average length and headway of vehicles. However, occupancy data is generated in increments of 0.002 due

to sensors’ limitations. As a result, density generated from the data is rounded to specific values. Finally,

although sensors also provided information on speed, the speed data was truncated at the speed limit (at

60 mph for some sensors, 65 mph for others). A ‘reconstructed speed’ data set is then constructed from the

volume and occupancy data using a method proposed by Dailey [1999].

As seen in Figure 2, there are numerous merges and forks through which vehicles may leave and arrive.

This setting introduces further error to volume and occupancy, therefore making the data harder to analyze.

However, for most scenarios, the additional noise does not undermine the validity of the model.
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Fig. 3: The Fundamental Diagram with data from one sensor.

The most relevant traffic properties utilized in the validation are the frequency of incident occurrence,

f , the duration until clearance and recovery, i.e., the so-called incident clearance time, 1
r , and the severity of

capacity reduction caused by an incident, α. We gather data from accidents and weather conditions to better

understand incidents. We then compare the sensors’ data with data from weather conditions in order to find

relations between incidents or traffic deterioration and extreme weather events such as fog, snowstorms,

thunderstorms, rain, or normal conditions. Precipitation data were obtained from the Climate Data Online

system of the National Climatic Data Center of the National Oceanic and Atmospheric Administration

[NOAA, Accesed in 2015-2016]. These data depict the hourly amount of precipitation in hundredths of

inches recorded at the Milwaukee Mitchell International Airport weather station, for the same period as

the traffic data. The data also include information on snow days and days with fog and thunderstorms.

Our findings show that snowstorms and fog cause the highest impact on travel time.

After comparing the sensor’s data with weather data and accident reports, we can split the speed,

occupancy, and volume information into two situations: normal conditions (uptime), and adverse conditions

(downtime). Downtime represents periods in which an accident or inclement weather condition deteriorates

the traffic flow. Furthermore, data are separated into peak hour and non-peak hour and had weekends and

late nights removed for accuracy. This separation allows us to analyze the behavior of each group accurately.

Lastly, winter month’s data is initially chosen to be the validation scenario during non-peak hours, because
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extra congestion due to weather during wintertime tends to be predominant and extensive. Mean clearance

time and the mean time to incident are calculated using only the times mentioned.

Since the previous assumption could be biased towards long stretches of down periods, i.e., snowfalls

that last several days, we also considered the case in which the system may only be affected by incidents,

with the occasional heavy rain. In this situation, we analyze the frequency of incident occurrence, as well

as the duration until clearance for the summer months during non-peak hours. We show that the model

works in both situations.

4 Analytical Model

The main objective of this paper is to analytically describe the probability mass function of the traffic

density while accounting for non-recurrent incidents. We also show that simulation and extensive datasets

may be unnecessary for long-term planning. In this section, we expand on previous research by creating a

closed-form analytical model applicable to any roadway. A few of the assumptions used in the model are

discussed and compared to a real-world dataset. The results include a simple approximation for the model

proposed by Baykal-Gürsoy and Xiao [2004] and Baykal-Gürsoy et al. [2009b] during non-peak hours and

a generalization for peak hours by Baykal-Gürsoy et al. [2009a]. Their models consider a segment of a road

operating in a two-state environment process as a Markovian queuing system. The two environment states

represent the situation of the roadway, which could be under normal or adverse conditions. The latter

refers to incidents such as snowstorms or accidents. They cause a reduction in the road capacity because

of closures or blockages, or because drivers tend to slow down and increase the distance to the car in front

for increased safety. The time in each environment state is assumed to be random.

4.1 Model Assumptions

Our model relies on the following assumptions:

1. Times to incidents and clearance times are exponentially distributed.

2. Distributions for each segment can be generated independently.

3. Travel times are exponentially distributed, under normal and deteriorated conditions.

4. Arrivals follow a Poisson process, under normal and deteriorated conditions.

Assumption (1) is met. The histograms for the time to incident and clearance times are plotted together

with a fitted exponential distribution in Figures 4 and 5 respectively. The distributions are fit with their
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maximum likelihood estimators. r2 values, the proportion of total variation in the outcomes explained by

the model, are reported for each fit. They indicate that both times to incident and clearance times can

be modeled as exponential random variables. Assumption (1) allows us to model the environment with a

Markovian model, for which servers change state according to a continuous-time Markov chain (CTMC).
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Fig. 4: Time to Incident Distribution.
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Fig. 5: Clearance Time Distribution.

Assumption (2) is also met. Although propagation effects will likely impact the parameters for upcoming

segments, we expect that traffic engineers will use this model for individual segments in which they know

or can estimate all the parameters. Section 4.2 lists these parameters, as well as their interpretation and

methods of estimation. Capturing the correlation between sensors would only be necessary if the param-

eters were partially known, as depicted in figure 6. This paper’s modeling approach generates parameters

from independent datasets for each segment, thus accounting for possible propagation effects. Therefore,

distributions can be generated independently despite a possible correlation between different segment’s

parameters.

Furthermore, the correlations between sensors are obtained indirectly by the model. The time of break-

downs will likely be correlated between segments, as weather events and car accidents will frequently

impact adjacent segments. This correlation is captured by the change in arrival and service rates during a

breakdown.

Assumption (3) is not met by our datasets, but we argue that this does not affect the final performance of

our model. The histograms for travel times under normal and deteriorated conditions are plotted in Figures

7 and 8. They show that these random variables do not follow an exponential distribution. Nonetheless, we

assume that these random variables do follow such distribution out of mathematical convenience (Baykal-

Gürsoy et al. [2019] show that this assumption does not affect the expected density). We will see in Section 5
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Multiple Tandem Queues System

Sensor 2 Sensor 3Sensor 1
Arrival Sensor 2 Arrival Sensor 3

Arrival  
Sensor 1 

Sensor 2Sensor 1 Sensor 2 Sensor 3

Random Single Queue System

Arrival  
Sensor 3

Arrival  
Sensor 2 

Arrival  
Sensor 1 

Fig. 6: Arrivals for the system proposed in this model are calculated independently of previous sensors.

Every sensor has its arrival inputted separately. Propagation effects only need to be accounted for in Tandem

Queue Systems, where the only arrival inputted is the one for Sensor 1.

that the model provides a good approximation for the probability mass function of traffic density, regardless

of the validity of this assumption.

Fig. 7: Travel Time Distribution under normal con-

ditions.

Fig. 8: Travel Time Distribution under adverse con-

ditions - this distribution has a thicker tail than

figure 7.

Assumption (4) is also not met by our dataset. However, this assumption is commonly used in literature

[J.N. Darroch and Morris, 1964, Gazis, 2006, Zheng and Liu, 2017, Wang and Ahmed, 2017]. Although

some methods in literature do not assume this, they introduce further complexity in the model, which then

requires simulation for solutions. Numerical experiments indicate that many of these traffic simulations
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produce nonhomogenous Poisson arrival processes. An example can be found in figure 9, which contains

the histogram of interarrival times at an arbitrary cell in a Cellular Automata model. Similar results can

be found for other microscopic traffic models, suggesting that even models which do not explicitly assume

that arrivals are Poisson ultimately reproduce a (possibly nonhomogenous) Poisson process.
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Fig. 9: Histogram of Interarrival Times from Nagel-Schreckenberg Simulation.

4.2 Model Structure and Parameters

4.2.1 Non-peak hours.

In the queue shown in Figure 10, each state of the Markov chain represents both the number of cars in

the system and the condition, normal or adverse, of the system. Figure 10 also depicts the definitions of

parameters.

Parameters λ and λ′ represent the arrival rate of the system in normal and adverse conditions, respec-

tively. It is typically true that λ ≥ λ′, although this is not necessary. Under the assumptions of section

4.1, the expected time between arrivals is given by 1
λ and 1

λ′ . This gives a method for estimating λ and λ′
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Fig. 10: State Transition Diagram for a Markov-modulated M/M/∞ Queue.

directly from traffic flow data:

λ =
1

E[time between arrivals during normal conditions]
= E[flow during normal conditions],

λ′ =
1

E[time between arrivals during adverse conditions]
= E[flow during adverse conditions].

Parameters µ and µ′ represent the service rate of the system in normal and adverse conditions, re-

spectively. The service rate is the instantaneous probability of a car leaving the segment of the road, and

therefore, leaving the system. Because the model allocates one server per vehicle, there are infinitely many

servers (as long as full capacity is not reached). Therefore, the service rate increases with the number of

cars in the systems. This assumption applies to non-peak hours, given the unlikelihood of traffic breakdown

during non-peak hours. We remove this assumption when discussing peak hours in section 4.2.2. The more

cars there are in the system, the more likely one of them will leave. Thus, if there are n cars on the seg-

ment, then the total service rate becomes nµ during normal conditions, and similarly nµ′ during adverse

conditions. Additionally, µ > µ′ because the service rate must be higher during normal conditions.

The service rate parameters come from the relationship between distance and speed. µ represents the

rate of cars crossing a segment when the system is under normal conditions and is given by the ratio of the

average speed and the segment length under normal conditions. Analogously, µ′ represents the rate of cars

crossing a segment when the system is under adverse conditions and is given by the ratio of the average

speed and distance under adverse conditions. This interpretation allows us to estimate µ and µ′ given the

distance between sensors and the reconstructed speed (described in section 3):

1

µ
=

segment length

E[speed reconstructed during normal conditions]
= E[travel time during normal conditions],

1

µ′
=

segment length

E[speed reconstructed during adverse conditions]
= E[travel time during adverse conditions].
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Parameters f and r represent the incident rate when the system is in normal condition, and the repair

rate when the system is in an adverse condition. They are determined from the incident and weather reports

by averaging the time until an incident (accident or adverse weather condition) occurs and the clearance

time of each incident. The failure rate (the number of times the system goes from normal condition to

adverse condition per unit time) is then given by one over the mean time to incidents, or the expected

time that the system will remain in normal condition. Analogously, the clearance rate (the number of times

the system goes from adverse condition to normal condition per unit time) is then given by one over the

mean clearance time. For our dataset, the expected clearance time during summer is around 1 hour. The

expected clearance time during winter is around 4.5 hours because snowfalls have a long lingering effect

that takes longer to be cleared.

f =
1

E[time to incident]
=

1

E[duration of normal condition]
,

r =
1

E[clearance time]
=

1

E[duration of adverse condition]
.

Keilson and Servi [1993] were the first to study such queues in a random environment. They derived the

generating function of the stationary number of customers in the system in terms of Kummer functions.

Baykal-Gürsoy and Xiao [2004] and Baykal-Gürsoy et al. [2009a,b] showed that the generating function

reveals that the steady-state number of vehicles in the system is composed of two independent random

variables. One represents the number of customers in an uninterrupted queue, and the other represents the

customers accumulated during interruptions. In other words, the random number of cars on a corridor, X,

is equal to X = Xφ + Y in steady-state, with Xφ representing the random number of vehicles accumulated

during the normal condition, and Y representing the additional cars accumulated due to incidents. Moreover,

Xφ and Y are independent of each other.

Furthermore, the complete distributions of Xφ and Y are derived. In equilibrium, Xφ follows a Poisson,

while Y = p · Y1 + (1 − p) · Y2 follows a mixture of two Poisson random variables Y1 and Y2 with random

parameters coming from two different truncated Beta distributions, as detailed below:

Xφ ∼ Poisson

(
λ

µ

)
, (1)

Y1 ∼ Poisson
(
B(a, b,−2ρ∗)

)
, (2)

Y2 ∼ Poisson
(
B(a+ 1, b+ 1,−2ρ∗)

)
, (3)

with: a =
f

µ
, b =

(f
µ

+
r

µ′
)
, ρ∗ =

1

2
·
(λ
µ
− λ′

µ′
)
, p =

(
r + fµ′

µ

)
(r + f)

, c = −2ρ∗.
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Once these parameters are determined, the model yields the probability mass function for the traffic

density. We compare it with the empirical traffic density obtained from occupancy data to assess how good

the fit is per sensor.

As mentioned before, each sensor is treated individually for validation purposes. Nevertheless, the

analytical models generated for each sensor produce correlated outputs because the input data is inherently

correlated.

Model improvements

The sensor’s data yield parameters a and b that are on the order of 10−5 for winter months, and a

in the order of 10−5 and b in the order of 10−3 for summer months, meaning that incident and clearance

rates, f and r, are considerably lower than µ and µ′. This relationship among these parameters depicts an

ordinary situation since the rates of incidents and clearances tend to be notably lower than the rate of cars

crossing the segment. This section proposes a simple approximation for this case. The simplified model has

the accuracy of the full model but is simpler to calculate.

Another underlying assumption used in this model is that the addition of new cars will not affect the

travel time – i.e., that the distribution for travel time is independent of the number of vehicles in the

system. For non-peak hours, the primary source of congestion is not the arrival rate, but rather system

deterioration caused by non-recurrent events, such as accidents or weather conditions. Section 4.2.2 also

disregards this assumption, as it considers peak hours.

Applying these reasonable assumptions results in a single equation for the probability mass function

of traffic density, which is later validated against the data. Moreover, we prove this equation to be just a

mixture of two Poisson distributions when times to incidents and clearance times are considerably longer

than travel times under normal and adverse conditions.

As we have discussed in this section, the probability mass function of traffic density is a convolution sum

between a Poisson random variable and a mixture of two Poisson random variables with random parameters

coming from truncated Beta distributions. It represents the probability mass function for the state of an

infinite queue subject to two-server states.

X = Xφ + Y, (4)

Y = p · Y1 + (1− p) · Y2. (5)
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The probability mass function of Y1 given in equation 2 can be explicitly written as:

P{Y1 = k} =

∫ c

0

e−γ · γ
k

k!
· Γ (b)

Γ (a)Γ (b− a)
·
(γ
c

)a−1(
1− γ

c

)b−a−1

c
dγ. (6)

P{Y2 = k} can be computed through the same integral, but via substituting (a) to (a+1) and (b) to (b+1).

Hence, derivations below can also be carried out for P{Y2 = k} following the same operations.

This integral is not robust for all ranges of a and b. Additionally, its lack of a closed-form prevents it

from being readily applied. There are several effective methods for computing this, the most simple being

solving the balance equations numerically. However, we will retain this closed-form as it allows for further

simplifications.

Note that the exponential factor in equation 6 could be expanded by using Taylor series to rewrite it

as a sum multiplied by the truncated beta function that is equal to Γ (k+n+a)Γ (b−a)
Γ (k+n+b) (see Olver [2010]).

P{Y1 = k} =
∞∑
n=0

(−1)n

n!

∫ c

0

γn · γ
k

k!
· Γ (b)

Γ (a)Γ (b− a)
·
(γ
c

)a−1(
1− γ

c

)b−a−1

c
dγ

=
∞∑
n=0

(−1)n

n!
· c
k+n

k!
· Γ (b)

Γ (a)Γ (b− a)
·
∫ c

0

(
γ

c

)k+n+a−1 (
1− γ

c

)b−a−1

d
γ

c

=
∞∑
n=0

(−1)n

n!
· c
k+n

k!
· Γ (b)

Γ (a)Γ (b− a)
·
∫ 1

0

xk+n+a−1(1− x)b−a−1dx

=
∞∑
n=0

(−1)n

n!
· c
k+n

k!
· Γ (b)Γ (k + a+ n)

Γ (a)Γ (k + b+ n)
.

The full equation can then be simplified by expanding the convolution sum to:

X =Xφ + Y,

P (X = k) =
k∑
q=0

P{Xφ = k − q}P{Y = q}

P (X = k) =
k∑
q=0

P{Xφ = k − q}(p · P{Y1 = q}+ (1− p) · P{Y2 = q})

=
k∑
q=0

e−λ/µ
(λ/µ)k−q

(k − q)!

[
p ·
∞∑
n=0

(−1)n

n!
· c
q+n

q!
· Γ (b)Γ (q + a+ n)

Γ (a)Γ (q + b+ n)

+ (1− p) ·
∞∑
n=0

(−1)n

n!
· c
q+n

q!
· Γ (b+ 1)Γ (q + a+ 1 + n)

Γ (a+ 1)Γ (q + b+ 1 + n)

]
. (7)

This new equation solves the issues the integral had for the extreme points.

In practice it is typically true that f � µ and r � µ′. This has the interpretation that the time a vehicle

spends traveling a segment is much shorter than the time it takes for traffic to accumulate or disperse from

an incident or a clearance. Under this assumption, further simplifications are possible. Tricomi and Erdélyi

[1951] prove the following asymptotic approximation for the quotient of gamma functions:

Γ (z + a)

Γ (z + b)
= za−b

[
1 +

(a− b)(a+ b− 1)

2z
+O(|z|)−2

]
. (8)
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This is approximately 1 when |a− b| � z, which is implied by f � µ and r � µ′.

For k = 0:

P{Y1 = k} =
∞∑
n=0

(−1)n

n!
· cn · Γ (b)Γ (a+ n)

Γ (a)Γ (b+ n)

=
Γ (b)Γ (a)

Γ (a)Γ (b)
+
∞∑
n=1

(−1)n

n!
· cn · Γ (b)Γ (a+ n)

Γ (a)Γ (b+ n)

≈ 1 +
Γ (b)

Γ (a)
(e−c − 1). (9)

For k ≥ 1:

P{Y1 = k} =
∞∑
n=0

(−1)n

n!
· c
k+n

k!
· Γ (b)Γ (k + a+ n)

Γ (a)Γ (k + b+ n)

≈ Γ (b)

Γ (a)

e−c · ck

k!
, (10)

The final equation is the weighted Poisson distribution.

This approximation is imprecise, since the ratio Γ (k+a+n)
Γ (k+b+n) slowly diverges from 1 as k+n grows bigger.

However, the increase in the factorial terms in the equations grows faster, thus offsetting such divergence.

Numerical experiments indicate that this approximation has no apparent adverse effect on the final density

function.

The derivations to determine the equations to solve for P{Y1 = k} can be used in a similar way for

P{Y2 = k}, under the same assumptions (small a’s and b’s). Since the only parameters changing are a = a+1

and b = b+ 1, it is easy to see that again Γ (k+a+1+n)
Γ (k+b+1+n) can be approximated as 1 for all k’s; besides, Γ (b+1)

Γ (a+1)

can also be approximated to 1, allowing for even further simplification.

Thus, the probability mass function of Y2, for all k’s is:

P{Y2 = k} =
∞∑
n=0

(−1)n

n!
· c
k+n

k!
· Γ (b+ 1)Γ (k + a+ 1 + n)

Γ (a+ 1)Γ (k + b+ 1 + n)

≈ Γ (b+ 1)

Γ (a+ 1)

e−c · ck

k!

≈ e−c · ck

k!
, (11)

which is a Poisson distribution.

We can further derive the probability of traffic density as

X =
r

r + f
Xφ +

f

r + f
Xb,

where Xφ is a random variable that follows a Poisson with parameter (λ/µ), and Xb is a random variable

that follows a Poisson with parameter (λ′/µ′). Proof is postponed to the Appendix. With a and b being
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small, the weight parameter of the mixture tends to r
r+f for Xφ and f

r+f for Xb. This is expected, because

when incident and clearance rates are low, it is likely that each car will spend the whole time in the same

state of the queue.

Proposition 1 The probability mass function of traffic density is the mixture of two Poisson random variables

with rates λ
µ and λ′

µ′ when the incident and clearance rates are considerably lower than µ and µ′. The mixing

weight for the Poisson random variable with rate λ
µ is given by r

r+f .

Although one may argue this result could follow from intuition, this proof formally demonstrates the

result to be true for segments where the time to incident and clearance times are much longer than the

average travel time to cross the segment. Furthermore, the proof shows that a more general formulation

(equation 7) must be used for segments that do not meet these criteria. Note that this also suggests the

probability mass function for the density depends on the clearance and incident rate, thus supporting the

importance of considering non-recurrent incidents in the model. This closed-form solution also allows traffic

engineers to compute higher moments when needed since they can be derived by weighing the moments

from a Poisson distribution. The moment generating function (MGF) of a Poisson random variable Z with

parameter φ is MZ(t) = eφ(e
t−1). The nth factorial moment of the distribution can be computed by taking

the nth derivative of the MGF, then setting t = 0 [Ross, 1996]. The central moments of this Poisson random

variable Z are E[Z] = φ, V [Z] = φ, Skewness[Z] =
√
φ−1, and Kurt[Z] = φ−1. Since the traffic density

random variable X is approximated as a mixture of two independent Poisson random variables, we can

immediately write its central moments as described in Table 1.

E[X] = r
r+f
· λ
µ

+ f
r+f
· λ

′

µ′ V [X] = r
r+f
· λ
µ

+ f
r+f
· λ

′

µ′

Skewness[X] = r
r+f
·
√
µ
λ

+ f
r+f
·
√
µ′

λ′ Kurt[X] = r
r+f
· µ
λ

+ f
r+f
· µ

′

λ′

Table 1: Central Moments for the traffic density distribution under non-peak hours.

4.2.2 Peak hours.

When the system operates in peak hours, the higher arrival rate of cars is also a cause of congestion.

In this case, the assumption that the travel time distribution is independent of the number of cars is

not as consistent with real-life scenarios. Therefore, we need to account for another source of travel time

deterioration: the current number of vehicles in the system.
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For this case, we combine our deterioration model with the congested traffic model M/G/C/C discussed

in Jain and Smith [1997]. Let us assume a = [a1, a2, a3, . . .] is a vector where component an represents the

deterioration coefficient caused by congestion when n cars are present. a1 = 1 because a single car can travel

at free-flow speed. Moreover, 0 ≤ an ≤ 1, and an is monotonically decreasing as n grows, meaning that cars

arriving can only maintain or worsen system conditions. As an initial suggestion, Jain and Smith [1997]

propose function an to be linearly or exponentially decreasing in n. In this paper, we assume a linearly

decreasing function for an, which avoids an overly fast deterioration caused by the additional cars.

Furthermore, since the probability of breakdown is not negligible in this scenario, the system capacity is

truncated at a certain point C, i.e., we assume that no more cars arrive after C cars are in the system. The

presence of C cars in the system represents a complete breakdown, where there is no space left for another

car to arrive. The modeling thus follows an M/M/C/C queue in a random environment, represented in

Figure 11.

0Normal: 1

λ

a1µ

2

λ

a22µ

. . .

λ

a33µ

C − 1

λ

a(C−1)(C − 1)µ

C

λ

aCCµ

0

f r

Failure: 1

λ′

a1µ′

f r

2

λ′

a22µ′

f r

. . .

λ′

a33µ′

C − 1

λ′

a(C−1)(C − 1)µ′

f r

C

λ′

aCCµ
′

f r

Fig. 11: State Transition Diagram for a Markov-modulated M/M/C/C Queue. Note the inclusion of the

parameters representing the extra congestion due to accumulation of cars, and the limited capacity C of

the system.

The solution for such a queue is described below, and more details can be found in Baykal-Gürsoy et al.

[2009a].

The balance equations are given by:

piN (λ+ f + iµai) = rpiF + ((i+ 1)µai+1) pi+1,N + λpi−1,N , for i = 1, 2, . . . , C − 1,

piF
(
λ′ + r + iµ′ai

)
= fpiN +

(
(i+ 1)µ′ai+1

)
pi+1,F + λ′pi−1,F , for i = 1, 2, . . . , C − 1.
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and the boundary equations are,

p0N (λ+ f) = rp0F + µa1p1N ,

p0F (λ′ + r) = fp1N + µ′a1p1F ,

pCN (CµaC + f) = rpCF + λpC−1,N ,

pCF
(
Cµ′aC + r

)
= fpCN + λ′pC−1,F ,

and the normalization equation is
∑C
i=0(piN + piF ) = 1.

Given a fixed value of C, determined as the maximum capacity of the road or as the number of cars for

which the road is in a breakdown, we can solve for all piN and piF , as long as the values of the vector a

are available.

Note that, unlike the non-peak hours’ framework, the probability mass function for density during peak-

hours does not have an intuitive closed form. However, we provide a straightforward and efficient framework

to compute it numerically via a relatively small linear system of equations.

5 Validation

This section shows how the proposed model compares to the dataset. Here, we use a dataset to compute

the aggregate parameters for the proposed model and compare it against the log-normal and Weibull

distributions. These models also provide a reasonable fit to the data, but they require parameters that

can only be found using observed density data. By comparison, the parameters for the proposed model

are often known by traffic engineers or readily available with little data collection, allowing an effortless

implementation of the model for different road segments.

5.1 Discussion and Findings

Results are obtained from the comparisons between the curve generated from the model and the data

for each sensor, as depicted in figures 12, 13, and 14. The curve represents the cumulative distributions

generated through the analytical model and from the density data computed from the occupancy data set.

The main goal is to determine whether the curve from the analytical model is a good fit for the histogram

and how it compares to other distributions used in literature. However, the dataset used is censored due to

limitations in the sensors’ precision. As a result, some points in the density distribution are misrepresented

in the dataset. This limitation causes distribution tests, such as the Kolmogorov-Smirnov test, to fail for
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both our model and other models used in literature. Therefore, we used the confidence interval obtained

from the Kolmogorov-Smirnov test [Massey Jr, 1951] along with an added uncertainty level to account

for sensors’ lack of precision to determine the validity of the model. As the figures show, the empirical

cumulative distribution is within the KS-test upper and lower bounds, and therefore matches the model’s

cumulative distribution. Lastly, we compare the analytical model to other distributions used in literature

employing the Akaike Information Criterion.

5.1.1 Non-peak hours.

The best approach when using this analytical model is to separate specific periods in which these parameters

behave according to the assumptions. The model assumes that time to incident and clearance times are

exponentially distributed, as well as the interarrival times for up and down periods, and travel times during

up and down periods. As an example, there could be a model for January and February, months known

to be the snowiest, then separate the remaining months in two groups, dry season and rainy season, and

have a model for each one of those. Such definitions depend on local factors and should be determined

individually.

Fig. 12: Comparison between the CDF of the model

and the empirical CDF from the data during non-

peak hours for the month of January, accounting

for both accident and snowfalls.

Fig. 13: Comparison between the CDF of the model

and the empirical CDF from the data during non-

peak hours for the months of June to August, ac-

counting for accidents with occasional heavy rain-

fall.

Figures 12 and 13 depict one of the 36 sensors comparison for non-peak hours during winter and

summer months. The upper and lower bounds represent the 5% significance level of the model distribution
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[Massey Jr, 1951] when accounting for data uncertainty due to the censored dataset. Since the empirical

distributions reside within the bounds, the model is valid for both sets of months. Non-peak hours data

were gathered from 11 a.m. to 1 p.m., Tuesday to Thursdays. The main difference between the two figures is

the slightly thicker tail in figure 12, mainly caused by snowstorms that tend to have a more lasting impact

than the heavy rains and accidents in the summer.

Model Lognormal Weibull Model Lognormal Weibull

(Winter) (Winter) (Winter) (Summer) (Summer) (Summer)

Mean 4931 4941 5042 1362 1173 1370

Best AIC (out of 36 sensors) 30 2 1 13 19 8

Table 2: Adapted AIC comparison between model and commonly used distributions during non-peak hours.

The parameters are obtained from the data during the month of January (Winter), and August (Summer),

Tuesday to Thursday, 11 a.m. to 1 p.m., for each sensor.

Table 2 indicates that the model closely matches the goodness of fit of log-normal and Weibull, two

commonly used distributions (the complete AIC list for each sensor is given in Table 9, Appendix 2). Hence,

our model is valid for roads in which incident and clearance rates (f and r) are much lower than µ and µ′.

The values also suggest the validity of the model for both winter and summer months, although parameters

may need adjustments for the analyzed period.

These results endorse the validity of this queuing theory approach, suggesting the simplified analytical

model (a mixture of two Poisson distributions) is robust enough. It matches the performance of or performs

better than other distributions used in literature. Furthermore, the results suggest that the assumptions

made by the model are valid.

Moreover, a significant advantage of this analytical model is that it does not require detailed data,

but rather aggregate parameters that can be easily estimated. Furthermore, minor errors in estimation are

not overly harmful to the performance of the model. The derivatives of expected value and distribution of

density with respect to the parameters λ, λ′, µ, µ′, f, r allow for sensitivity analysis. Except for λ and λ′,

this model is robust to errors in estimation. For similar values to those seen on all sensors, a 10% error in

µ or µ′ results in a 1% error in expected density. The model is sensitive to changes in λ and λ′, only when

λ ≈ λ′. This model is, therefore, appropriate as an initial gauge on how traffic density will behave in new
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roadways, in roadways for which data are scarce, and in roadways that may have endured some change in

behavior.

5.1.2 Peak hours.

Similar to non-peak hours, the results for peak hours also proved to be very robust. Peak hours are defined as

the times between 8 a.m. and 10 a.m. for Southeast direction, and between 6 p.m. and 8 p.m. for Northwest

direction, Tuesday to Thursday. These periods are chosen to match the commute from residential areas to

work locations in the morning and back in the evening.

The values of a are calculated from a function of the number of cars in the system and the road segment

capacity. They determine the deterioration in service level (travel time) caused by the presence of more cars,

thus causing drivers to drive more carefully and slowly. Jain and Smith [1997] suggest that such function

could be linear and follow an = C+1−n
C , where C is the capacity of the segment. In our dataset, segments

are half-mile long and contain three lanes. Thus, we can obtain C as

C =
length segment · number of lanes

average length of a car
=

0.5 · 3
22/5280

= 360,

giving an = 361−n
360 .

An alternative approach is to generate a via travel time computed from the speed data. By comparing

average speed data for each density point in each sensor, we can directly generate a. For each density point,

we can observe every car’s speed, thus creating an array of speed data points. For density points with fewer

than three speed data points, we assume speed remained the same as the previous density data point to

prevent outliers.

Although the two approaches yield good fits, the one that generates a from a linear function covers a

little more of the variance of the data. The average r2 for the linearly generated a is 0.776, and for the a

coming from speed data is 0.762. This suggests that a closed-form function is a robust option even when

data is not present. Hence, we choose to present the results obtained with the linear function for a.

Figure 14 presents the empirical CDF generated from the data along with the model generated CDF.

The upper and lower bounds represent the 5% confidence interval of the model distribution [Massey Jr,

1951] when accounting for data uncertainty due to the gaps in the dataset. Since the empirical distribution

resides within the bounds, the model is valid.

Table 3 compares the goodness of fit for our model with other commonly used distributions for traffic

density (the complete AIC list for each sensor is described in Table 10, Appendix 2). Adapted AICs (fol-
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Fig. 14: Comparison between the CDF of the model and the empirical CDF from the data during peak

hours for Summer months. Deterioration due to the number of cars, along with a similar arrival rate cause

the difference between months to be minor during peak hours.

Model Lognormal Weibull Model Lognormal Weibull

(Winter) (Winter) (Winter) (Summer) (Summer) (Summer)

Mean 5236 5377 5433 804 786 812

Best AIC (out of 36 sensors) 33 (1 tie) 3 (1 tie) 1 5 (1 tie) 23 (1 tie) 6

Table 3: Adapted AIC comparison between model and commonly used distributions during peak hours.

The parameters are obtained from the data during the month of January (Winter), and August (Summer),

Tuesday to Thursday, 8 a.m. to 10 a.m. for sensors in SE direction and 6 p.m. to 8 p.m. for sensors in the

WN direction.

lowing the same algorithm described for non-peak hours) are calculated using the maximum log-likelihood

function from the data for the model, lognormal and Weibull distributions. The MLEs calculated for the

model are obtained using the Nelder-Mead method with five iterations [Nelder and Mead, 1965], which im-

plies that certain improvements can still be achieved in the model’s AIC if more iterations are performed.

Results indicate that the analytical model performs slightly better than the other two fits during winter,

and is consistent with the other two fits during summer months. They reiterate the importance of our model

because it does not depend on large sets of data that can be expensive or infeasible to gather, differently

from the other distributions.
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6 Applications

6.1 Sensitivity on the deterioration level α

We consider the effect of the ratio between µ′ and µ, which we call α. The lower the α is, the worse the

system becomes when it deteriorates. A value of α = 0.80 means service frequency drops 20% when the

system deteriorates due to an incident. This parameter is one of the most difficult to change — it mainly

reflects the overall infrastructure’s resilience to incidents. A change in this parameter could represent the

aging of a system or a significant shift in utilization. The model presented in this paper can help traffic

engineers understand the effect a change in the deterioration level would have on congestion.

Tables 4 and 5 contain several points on the tail distribution for density during peak and non-peak

hours. For example, we expect to see more than 11 cars with more than 30% probability when α = 0.8

during non-peak hours and more than 18 with the same probability during peak hours. It is interesting

to see that, as α decreases, the tail becomes thicker. The tables also show that the left side of the tail

distribution is very similar for both non-peak and peak hours (as shown for P{X > x} ≥ 70%). In this

part of the distribution, α has little impact. However, on the right side of the distribution (as shown for

P{X > x} ≤ 30%) for peak hours, the addition of cars caused by a non-recurrent incident causes traffic to

become worse when α is small, creating a cascading effect in traffic congestion.

P{X > x} 99% 70% 30% 1% E[number of cars]

α=0.8 4 8 11 17 8.63

α=0.6 4 8 11 20 8.99

α=0.4 4 8 12 28 9.71

α=0.2 4 8 12 52 11.86

Table 4: Tail Probability for different levels of deterioration during non-peak hours when the arrival rate is

15 cars per minute, expected travel time is 1 minute under normal conditions, expected time to incident is

41 hours and expected clearance time is 28 hours. The expected travel time under adverse conditions vary

with α as 1
αµ , i.e., 1

αE[travel time under normal conditions].

More graphically, on Figures 15 and 16, we can see how the probability mass function behaves as

α decreases for both non-peak and peak hours. At first, the tail starts to thicken. However, after some

threshold, the system begins to become bimodal, with an evident separation between the normal condition
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P{X > x} 99% 70% 30% 1% E[number of cars]

α=0.8 8 14 18 27 15.01

α=0.6 8 14 18 33 15.69

α=0.4 8 14 19 49 17.14

α=0.2 8 14 19 112 22.81

Table 5: Tail Probability for different levels of deterioration during peak hours when the arrival rate is 25

cars per minute, expected travel time is 1 minute under normal conditions (before accounting for deterio-

ration caused by congestion), and expected time to incident is 41 hours and expected clearance time is 28

hours. The expected travel time under adverse conditions (before accounting for deterioration caused by

congestion) vary with α as 1
αµ , i.e., 1

αE[travel time under normal conditions].

distribution and the adverse condition distribution. This bimodality is more prominent during peak hours

than non-peak hours.

The probability of traffic breakdown directly follows from the resulting distribution. Traffic engineers

may determine the number of cars that causes a traffic breakdown on this particular road, and then have

the probability of breakdown determined by the model. This model is flexible enough to provide decision-

makers with such a measure for different definitions of traffic breakdown since the literature has yet to

agree on a specific definition.

6.2 Example on the usage of the model for planning

In this section, we provide an example of how this new model can be used by traffic engineers to help

in their decision-making process. Suppose traffic engineers are planning to build a highway with different

0.5-mile sections. They are considering various investments, which alter multiple parameters in the model.

In particular, they will look at the number of lanes to be built and the budget for nearby service vehicles

and first responders. They assume all 0.5-mile sections within a region behave similarly. Such a study would

usually entail collecting data for similar existing highways and simulating changes to them. However, the

proposed model enables these analyses without such data or simulations.

In order to understand how the highway would behave throughout different periods, they separate the

analysis into three period groups: low usage, which includes late nights, early mornings, weekends, and

holidays; medium usage, which includes weekdays, but during times that avoid the main commute rush;
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Fig. 15: PMF’s for non-peak hours when the arrival

rate is 15 cars per minute, expected travel time is 1

minute under normal conditions, and expected time

to incident is 41 hours and expected clearance time

is 28 hours.

Fig. 16: PMF’s for peak hours when the arrival rate

is 25 cars per minute, expected travel time is 1

minute under normal conditions (before account-

ing for deterioration caused by congestion), and ex-

pected time to incident is 41 hours and expected

clearance time is 28 hours.

high usage, which includes weekdays peak-hours. By comparing the region with other similar locations, the

traffic engineers were able to estimate the following parameters:

Low Usage Medium Usage High Usage

λ 160 650 1100

λ′ 150 630 790

µ 60 21 18

µ′ 40 14 12

f 0.00002 0.005 0.02

r 2 2 2

Table 6: Parameters estimated by the traffic engineers for the location in which the new highway will be

built.

From the results, we can assume that the system is unlikely to reach full capacity under Medium Usage,

and we, therefore, use the non-peak hours’ method to calculate the density distribution. For the High Usage

time frame, we use the peak-hours model instead.

We first explore the effect of lane count, assuming an average clearance time of 30 minutes. Increasing

the lane count is equivalent to increasing the capacity of the system. Table 7 shows the probabilities of
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seeing more than 10% of the road occupied and the probability of having less than 90% of the road occupied

under Medium and High Usage given the number (1, 2 or 3) of lanes. We immediately see the trade-off

between under-utilization in medium usage periods and over-utilization in high usage periods. The correct

selection of lanes depends on the constraints faced by the decision-maker. For the sake of discussion, we

select two lanes, which will be over-utilized 25% of the time during peak hours.

Medium Usage High Usage

Lanes P{X > 0.1 · C} P{X < 0.9 · C} P{X > 0.1 · C} P{X < 0.9 · C}

1 0.9999 1 1 0.2306

2 0.8799 1 1 0.7583

3 0.1608 1 1 0.9998

Table 7: Probability of under-utilization and over-utilization for different lane counts. C represents the

capacity of the system, which is a function of the number of lanes.

With the number of lanes selected, we consider changes to the clearance time. It can be affected by other

investments, such as the response time of first responders and service vehicles. Again we see a trade-off that

must be reconciled by the decision-maker — over-utilization can be reduced, but only by making significant

reductions in clearance time. Another consideration is that increasing the clearance rate (i.e., decreasing

expected clearance time) has a stronger impact on lowering over-utilization than under-utilization.

Medium Usage High Usage

E[Clearance Time] r P{X > 24} P{X < 216} P{X > 24} P{X < 216}

8.5 min 7 0.8796 1 1 0.9092

15 min 4 0.8797 1 1 0.8587

30 min 2 0.8799 1 1 0.7583

5 h 0.2 0.8825 1 1 0.2146

50 h 0.02 0.9036 1 1 0.0002

Table 8: Probability of under-utilization and over-utilization for different clearance times, with 2 lanes.

7 Conclusion

The analytical queuing model for traffic density proposed by Baykal-Gürsoy and Xiao [2004], Baykal-Gürsoy

et al. [2009b] proved valid under certain conditions. Its original form has been algebraically changed for
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more direct computational results, making its application more natural. When incident and clearance

frequencies have low variance, and traffic conditions are steady, the model further simplifies into a mixture

of two Poisson random variables. Moreover, the model has now been expanded to account for peak hour

congestion in addition to non-peak hour congestion estimation. Results are comparable to other models used

in literature. The simplicity of this model provides a direct application that makes it easily adaptable to

different conditions. The full distribution output also allows for efficient performance measurement, which

includes estimating the probability of breakdown or analyzing what impact changes in the infrastructure

may cause. However, because the proposed model assumes independence between segments, it may not be

suitable for planning in long stretches of road where the aggregate parameters vary across space. Tandem

queueing networks allow for local changes in the incident and clearance rates, as well as the inclusion of the

effect of propagation across segments. Further research into the distributions of Markov-modulated tandem

queueing networks and their comparison with the presented model is planned. Nonetheless, the proposed

model has the potential to impact long-term congestion planning by providing decision-makers with the

full probabilistic behavior of congestion emerging from their decisions, even when only minimal statistical

information is available.
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APPENDIX 1 – Proof of Proposition 1

We will derive the probability mass function of the random number of cars on a segment from equations 1,

4, 5, 9, 10, and 11.

P{X = k} =P{Xφ + Y = k} =
k∑
q=0

P{Xφ = k − q} · P{Y = q}

=P{Xφ = k} · P{Y = 0}+
k∑
q=1

P{Xφ = k − q} · (p · P{Y1 = q}+ (1− p) · P{Y2 = q})

=
e−λ/µ · (λ/µ)k

k!
·
[
p ·
(

1 +
Γ (b)

Γ (a)
(e−c − 1)

)
+ (1− p)e−c

]
+

k∑
q=1

e−λ/µ · (λ/µ)k−q

(k − q)!

[
p ·
(
Γ (b)

Γ (a)

(e−ccq)

q!

)
+ (1− p) (e−ccq)

q!

]

=
e−λ/µ · (λ/µ)k

k!
·
[
e−c

(
1 + p

(
Γ (b)

Γ (a)
− 1

))
+ p

(
1− Γ (b)

Γ (a)

)]
+

(
1 + p

(
Γ (b)

Γ (a)
− 1

)) k∑
q=1

e−λ/µ · (λ/µ)k−q

(k − q)!
· e
−ccq

q!

=
e−λ/µ · (λ/µ)k

k!
·
[
e−c

(
1 + p

(
Γ (b)

Γ (a)
− 1

))
+ p

(
1− Γ (b)

Γ (a)

)]
+

(
1 + p

(
Γ (b)

Γ (a)
− 1

)) k∑
q=1

e−λ/µ · (λ/µ)k−q

(k − q)!
· e
−ccq

q!
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Substituting
(

1− p
(

1− Γ (b)
Γ (a)

))
= m, we have

P{X = k} =
e−λ/µ · (λ/µ)k

k!
·
[
e−cm+ (1−m)

]
+m · e

−(λ/µ+c)[(λ/µ+ c)k − (λ/µ)k]

k!

=(1−m) · e
−λ/µ · (λ/µ)k

k!
+m

(
e−(λ/µ+c)[(λ/µ+ c)k − (λ/µ)k]

k!
+
e−λ/µ+c · (λ/µ)k

k!

)

=(1−m) · e
−λ/µ · (λ/µ)k

k!
+m

(
e−(λ/µ+c)(λ/µ+ c)k

k!

)
.

Therefore

P{X = k} = p

(
1− Γ (b)

Γ (a)

)
Xg +

(
1− p

(
1− Γ (b)

Γ (a)

))
Xb.

Now we will show that p
(

1− Γ (b)
Γ (a)

)
is approximately equal to r

r+f for small a and b.

Claim: p
(

1− Γ (b)
Γ (a)

)
≈ r

r+f for small a and b.

For x > 0,

Γ (x) =
Γ (x+ 1)

x
.

The above relation for x = a = f
µ and x = b = f

µ + r
µ′ , implies

Γ (b)

Γ (a)
=

f
µ

f
µ + r

µ′

· Γ (b+ 1)

Γ (a+ 1)
.

Using the approximation (8) for z = 1, since a � 1, b � 1, and b − a � 1, one can deduce that Γ (b+1)
Γ (a+1) is

approximately equal to 1. Thus,

Γ (b)

Γ (a)
≈

f
µ

f
µ + r

µ′

.

Because p =
r+f µ

′
µ

r+f , the result follows

p

(
1− Γ (b)

Γ (a)

)
≈

(
r + f µ

′

µ

r + f

)(
1−

f
µ

f
µ + r

µ′

)

=

(
rµ+ fµ′

µ(r + f)

)( r
µ′

f
µ + r

µ′

)
=

r

r + f
.

As a result, the probability mass function of density tends to the mixture P{X = k} = r
r+fXg + f

r+fXb,

where Xg follow a Poisson with parameter (λ/µ) and Xb follow a Poisson with parameter (λ′/µ′).

The error of the approximation can be derived similarly to the previous proof:

Error = p

(
1− Γ (b)

Γ (a)

)
− r

r + f

=

(
rµ+ fµ′

µ(r + f)

)(
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f
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− r
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µ(r + f)

=
f

r + f
· µ
′

µ
·
(

1− Γ (b+ 1)
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)
.
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One can see that when f and r are smaller in comparison to µ and µ′, respectively, this approximation of

the weight of the mixture holds. Figure 17 shows the error for different ratios between f and µ and r and

µ′. We can see that when they are around 1% of the µ and µ′, the error is on the order of 10−3, and it

decreases to lower than 10−5 when the ratios drop to 0.01%.

Fig. 17: Error between the algebraically found weight and r
r+f for different ratios of f and µ, and r and µ′.
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APPENDIX 2 – Tables containing AIC for each sensor

Sensor Model Lognormal Weibull Model Lognormal Weibull

(SE) then (WN) (Winter) (Winter) (Winter) (Summer) (Summer) (Summer)

1 6057 5763 5607 783 784 804

2 4775 4795 5058 747 749 814

3 6427 5867 5732 817 814 840

4 4965 4985 5453 767 791 882

5 4555 4794 5307 738 769 862

6 4740 4849 5250 789 787 800

7 4948 4970 5405 776 779 778

8 4752 4819 4792 1303 1233 1344

9 4636 4708 4664 787 792 786

10 4865 4866 4938 771 776 774

11 4956 5007 4995 822 830 820

12 4689 4754 4721 820 832 831

13 4078 4157 4263 700 700 705

14 4762 4814 4874 800 803 802

15 4762 4838 4791 816 816 818

16 4670 4740 4706 802 803 805

17 5009 5070 5021 804 804 804

18 5983 5337 5361 830 826 831

1 4822 4862 4869 833 829 810

2 5334 5319 5507 891 893 882

3 4724 4818 5251 806 807 802

4 4724 4818 5251 806 807 802

5 4867 4889 4899 988 887 1070

6 5003 5026 5018 1034 907 1073

7 4795 4832 4825 993 892 1102

8 3990 4125 4007 1210 1062 1364

9 4740 4802 4770 1058 929 957

10 4904 4942 4937 1328 1111 1147

11 5106 5131 5127 1633 1271 1280

12 5319 5317 5287 1727 1632 1589

13 5642 5567 5549 1717 1588 1623

14 4900 4959 4914 1872 1972 2099

15 4722 4757 4947 4854 3187 N/A

16 4480 4620 4884 6314 4013 N/A

17 4890 4956 5196 3606 2302 9400

18 4941 5014 5328 2699 2437 5473

Table 9: Full list of the adapted AIC comparison between model and commonly used distributions during

non-peak hours.
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Sensor Model Lognormal Weibull Model Lognormal Weibull

(SE) then (WN) (Winter) (Winter) (Winter) (Summer) (Summer) (Summer)

1 5505 6026 5767 774 772 780

2 4938 5132 5149 746 743 746

3 5663 6055 5775 800 796 798

4 5112 5302 5358 775 768 775

5 4777 5182 5341 736 728 734

6 5020 5147 5366 762 747 746

7 5255 5357 5626 771 776 767

8 N/A 5830 5990 874 831 883

9 5000 5257 4999 790 774 795

10 5230 5426 5262 777 786 831

11 5245 5494 5353 867 812 868

12 5163 5351 5247 829 809 854

13 4577 4982 5141 789 687 721

14 5343 5468 5626 822 798 807

15 5385 5678 5922 825 798 863

16 5643 5683 5943 747 797 867

17 6003 6050 6263 886 853 886

18 5955 6062 6262 926 846 907

1 5391 5395 5510 823 809 852

2 5765 5770 5847 882 876 920

3 5221 5245 5258 797 788 796

4 5221 5245 5258 797 788 796

5 5286 5310 5323 784 778 780

6 5345 5375 5374 806 801 795

7 5212 5241 5249 827 761 767

8 4505 4533 4507 747 747 753

9 4929 4961 4952 781 775 772

10 5169 5195 5198 792 787 783

11 5138 5152 5199 886 827 817

12 5351 5506 5476 809 772 788

13 5554 5734 5689 828 809 818

14 5039 5121 5180 779 758 806

15 4851 4864 4945 756 763 828

16 4814 4818 4972 738 746 821

17 5236 5228 5482 816 787 837

18 5402 5402 5784 806 803 871

Table 10: Full list of the adapted AIC comparison between model and commonly used distributions during

peak hours.


