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VARIABILITY SENSITIVE MARKOV
DECISION PROCESSES*?

MELIKE BAYKAL-GURSOY anxp KEITH W. ROSS

Considered are time-average Markov Decision Processes (MDPs) with fimite state and
action spaces. Two definitions of variability are introduced, namely, the expected time-aver-
age variability and time-average expected variability. The two criteria are in general different,
although they can both be employed to penalize for variance in the stream of rewards. For
communicating MDPs, we construct a (randomized) stationary policy that is e-optimal for
both criteria; the policy is optimal and pure for a specific variability function. For general
multichain MDPs, a state space decomposition leads to a similar result for the expected
time-average variability. We also consider the problem of the decision maker choosing the
initial state along with the policy.

1. Introduction. Considered are time-average Markov Decision Processes
(MDPs) with finite state and action spaces and with a fixed and given initial state. The
great majority of the literature in this area is concerned with finding a policy u that
maximizes

¢(u) = liminf -’1; i E,[R,]

m=1

where R, is the reward obtained at epoch m. It is well known that there exists an
optimal pure (i.e., stationary and deterministic) policy for this criterion. Moreover,
policy improvement, value iteration, and linear programming algorithms are available
to locate such an optimal pure policy (e.g., see [9], [11D.

Recently there has been interest in studying criteria that take into account the
variance in the stream of rewards. For instance, Filar et al. [8] consider the problem
of maximizing ¢(u) — A var(u) over policies u € Uy, where A > 0,

n

var(u) = lim % :IE,,[(Rm ~ $(w)],

n
m

and U, is the class of all policies whose expected state-action frequencies converge
(see Derman [7] or §2). The quantity var(u) captures the notion of variability in the
following sense: first, the probabilistic variance of the reward at epoch m is taken
with respect to the time-average expected reward ¢(u); then the time average of the
probabilistic variance is obtained.

The problem of maximizing ¢(u) — A var(u) over policies in U, was addressed in a
more general context by Derman (see p. 94 of [7)). It follows from Derman that there
exists a pure policy that maximizes ¢(u) — A var(u) over all policies u € U;. However,
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VARIABILITY SENSITIVE MARKOV DECISION PROCESSES 559

Derman’s existence result does not point to an algorithm which would locate an
optimal policy. To this end, Filar ez al. [8] give a mathematical program with linear
constraints and quadratic objective function. They then give a condition, inspired by a
result of Hordijk and Kallenberg [10], so that a stationary policy obtained from the
optimal solution of the mathematical program is optimal for the original problem.
However, the condition does not in general hold true, so that their algorithm may
give rise to a strictly suboptimal stationary policy.

Sobel [16] considers the related problem of finding Pareto-optimal policies in the
sense of a high ¢(u) and low var(u). He optimizes over stationary policies and focuses
his study on the unichain case. A parametric LP algorithm and a policy improvement
algorithm are given, and both produce Pareto-optimal pure policies. See also [3], [4],
[13] for other recent studies on variance sensitive MDPs.

In this paper we consider the following two criteria:

n n
v(u) = E,| liminf 1 Yoh Rm,l Y R/|| and
neee T "

xk(u) = liminf% Y EJA(R,,, d,(n))], where
n—e m-=1

b,(u) = % [2’1:1 E[R].

The variability function h(-, - ) compares at each epoch m the current reward with
the average reward over an interval that includes m. Throughout we assume that
h(-, - ) is a continuous function. We shall refer to v(u) as the expected time-average
variability and to x(u) as the time-average expected variability. Loosely speaking, v(u)
places emphasis on the time-average variability and «(u) places emphasis on the
probabilistic variability.

We will show that if A(x,y) =x — AMx — y)?, then the time-average expected
variability «(u) satisfies k(u) = ¢(u) — Avar(u) for all u € U,. Thus for this choice of
h(-, - ) the problem of maximizing «(u) over u € U, is equivalent to the problem
considered by Filar er al. [8] and closely related to the problem considered by Sobel
[16].

In §3 we show that the two criteria, v(u) and «(u), are in general different. In
particular, we show that »(f) # x(f) can occur for a stationary policy f and that the
optimal policy for »(u) may be suboptimal for «(u), and vice versa. However, in the
unichain case we show that »(f) = «(f) for all stationary policies f. This result along
with our optimization results imply that the two criteria have the same optimal
stationary policy for unichain MDPs.

In §4 we consider communicating MDPs. We first give an example which illustrates
that there does not in general exist an optimal stationary policy for v(u) or for x(un).
We then construct a stationary policy that is e-optimal for both v(u) and «(u). The
e-optimal stationary policy can be directly obtained from the solution of a mathemati-
cal program with linear constraints and nonlinear objective function. Furthermore,
for the case A(x, y) = x — A(x — y)? with A > 0 we construct a pure policy which is
optimal for both v(u) and «{u). This optimal pure policy can be directly obtained
from the solutions of a parametric linear program.

In §5 we return to general multichain MDPs. We make use of the sample path and
decomposition techniques of Ross and Varadarajan [14] to develop an algorithm
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560 MELIKE BAYKAL-GURSOV & KEITH W. ROSS

which constructs an e-optimal stationary policy for the expected time-average vari-
ability criterion v(u). In the case A(x,y) =x — A(x — y)* with A > 0 this policy
becomes an optimal pure policy for v(u). However, these optimal and e-optimal
policies may be strictly suboptimal for the time-average expected variability criterion
k(u).

In §6, we consider the problem of choosing both the policy and the initial state,
which was first posed and solved by Sobel [16] for variance sensitive MDPs. We show
that the sample path and decomposition techniques lead to an alternative solution to
this problem. In particular, if #(x, y) = x — A(x — y)* with A > 0 then »(u) and «(u)
have the same optimal pure policy.

We conclude in §7 with a list of problems that remain open for time average MDPs
with variability sensitive criteria.

2. Preliminaries. Denote {X,, n = 1,2,...} for the state process, which takes
values in a finite state space .. At each epoch n the decision maker chooses
an action A, from the finite action space &. The underlying sample space () =
{# X &) consists of all possible realizations of states and actions. Throughout the
sample space will be equipped with the o-algebra generated by the random variables
(X, 4, X5, A,,...). The initial state is assumed to be fixed and given. Denote p,, ,
x € ./,a €,y e 7, for the law of motion of the MDP, i.e., for all policies u and
all epochs n

P(X,. =YX, A,.... X A

n—1»

n~l’Xn =X, An = (1) =pxay‘

A policy f is said to be a stationary if the choice of action depends only on the
current state of the process; denote f(x, a) for the probability of choosing action a
when in state x. A stationary policy is said to be pure if for each x € . there is one
action a € & such that f(x,a) = 1. Let U, F,G denote the classes of all policies,
stationary policies, and pure policies, respectively; clearly, G C F C U.

Under any stationary policy f, the state process {X,, n = 1,2,...} is a Markov
chain with transition matrix P(f) whose components are given by

ny(f) = Z pxayf(x’a)'
s

A transition matrix P(f) is said to be unichain if it has at most one recurrent class plus
(a perhaps empty) set of transient states. An MDP is unichain if P(g) is unichain for
all pure policies g. An MDP is conmununicating if P(f) is irreducible for all stationary
policies that satisfy f(x,a) > 0, x € ., a € &7 (see [1] or [14]).

For each x € . and a € &7 define the random variables denoting the state-action
frequencies through epoch n as

where 1(-) denotes the indicator function. Let U, denote the class of all policies u
such that {Z (x,a), n = 1,2,...} converges P,-almost surcly for all x € . and
a € . Thus, if u € U, then there exist random variables {Z(x, a)} such that

lim Z,(x,a) =Z(x,a)
n—r oo

P,-almost surely for all x € ., a € &. Let U; be the class of all policies u such that
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VARIABILITY SENSITIVE MARKOV DECISION PROCESSES 561

the expected state-action frequencies (E,[Z,(x,a)], n = 1,2,...} converge for all x
and a. For u € U, denote

zy(x,a) = lim E,[Z,(x,4a)].

From Lebesgue’s Dominated Convergence Theorem we have U, ¢ U,. Since under
any stationary policy {(X,, 4,), n = 1,2,...} is a homogencous Markov chain, it
follows (e.g., see Cinlar [5]) that the limit of Z,(x, a) exists P,-almost surely for all x
and a. Hence, F C U, so that G C F c U, c U, c U.

Denote r(x, a) for the reward obtained when the state is x and action « is chosen.
Thus the reward obtained at epoch n is R, = r(X,, A,). Recall the definition of the
expected time-average variability 1#(u) and the time-average expected variability «(u)
given in the Introduction. Let

v = sup v(u), k= sup x(u).
uwsly uel

A policy u is optimal for »(-) if v(u) = v. For a fixed € > 0, a policy u is e-optimal for

v(-)if v(w) > v — €. Optimality and e-optimality for «(-) are defined in an analogous
fashion.

3. Notions of variability. We first consider the time-average expected variability

k(u). The following proposition shows that x(u) can be conveniently expressed in
terms of the long-run expected state-action frequencies {z,(x, a)}.

ProposiTioN 1. For all w € U,,

(1) $(u) = L r(x,a)z,(x,a) and

x,a

(2) k(u) = Zh[r(x,a),q&(u)]zu(x,a).

Moreover, if h(x,y) = x — AMx ~ y)? then for all u € U,
k(u) = ¢(u) — Avar(u).

Proor. Fix a policy u € U,. It is straightforward to establish (1) and that

(3) lim ilE..[h(Rm,fb(u))] = L h[r(x.a), $(u)]zy(x, a).

n—

Let A = {r(x,a) x € 7, a € &). We have

n-—»

(4) lim %Eu 3 h(R,,, $,(u)) ~ i A(R,,, d(u))
m=1 m=1

< lim o X max (7. 6,(0) = h(r,p(w)|

n-—>x

= lim max |A(r, ¢,(u)) — h(r,$(u))| =0,

n—w reA
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562 MELIKE BAYKAL-GURSOV & KEITH W. ROSS

where the last equality follows from the continuity of A(-, - ). Combining (3) and (4)
gives (2). The last statement follows directly from (2). ©

It follows from Proposition 1 that if A(x, y) =x — A(x — y)?, then the problem of
maximizing x(u) over u € U, is equivalent to the problem considered by Filar et al.
Other interesting choices for A(-, - ) include

K
h(x,y) =x — Z Aglx "Ylk,
k=1

and continuous approximations of

N X, x>y —a,
(x.y) = {x — A otherwise,

where A > 0, a« > 0. Note that the first variability function takes into account higher
moments, whereas the second variability function attempts to make the average
expected reward ¢(u) high while keeping the current reward R, above o(u) — «
with high probability.

Now consider the expected time-average variability criterion v(u). The following
proposition shows that the time-average variability can be conveniently expressed in
terms of the long-run state-action frequencies {Z(x,a): x € ./, a € & }. Its proof is
similar to that of Proposition 1 and will be omitted. Let

ProposITION 2. For all u € U, we have

liminf% i h(R,.R,) = Zh[r(x,a), Zr(y,b)Z(y,b)]Z(x,a)
m=1 x,a

n—w ,V,b

P,-almost surely. If h(x,y) = x — Mx — y)?, then for u € U, we have
S =2
v(u) = g(u) — A lim - ;lE“[(Rm -&)].

We now compare the expected time-average variability v(u) with the time-average
expected variability x(u). We first show that the two criteria can be quite different.

ExampLi 1. Consider an MDP with state space {0, 1,2}. Let the initial state be 0
and let the states 1 and 2 be absorbing. Let there be two possible actions to choose
from when in state 0: action a, under which the process moves to state 1 with
probability 1; action b, under which the process moves to states 1 and 2 with
probabilities 0.1 and 0.9, respectively. Let the (single-stage) rewards for states 1 and 2
be equal to 0 and 10, respectively. Let A(x, y) =x — A(x — y)? with A > 0.

There are exactly 2 pure policies for this MDP: g, which chooses action a when in
state 0; g, which chooses action b when in state 0. It is easily seen that v(g,) = «(g,)
—0-A-0=0. But u(g,) =9 —A-0=29and x(g,) =9 — A - 9. Hence, v(g,) #
k(g ,).

Now suppose that A > 1. Then for the expected time-average variability criterion,
»(u), the optimal policy is g,, which produces a constant stream of 10s with
probability 0.9 and produces a constant stream of Os with probability 0.1. For the
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VARIABILITY SENSITIVE MARKQV DECISION PROCESSES 563

time-average expected variability criterion, «(u), the optimal policy is g,, which
produces a constant stream of 0s with probability 1. Hence, the two criteria lead to
different optimal policies. ©

Propositions 3 and 4 shed additional insight on the relationship between the
criteria »(u) and «(u). The proof of Proposition 4 is straightforward and omitted.

ProrosiTion 3. Suppose h(x,y) =x — A(x — y)? for some A > 0 (which corre-
sponds to the criterion of Filar et al. [8] and is closely related to the criterion of Sobel
[16]). Then v(u) > k(u) for all w € U,.

Proor. Employing Propositions 1 and 2 it is straightforward to show that for all
uel,

(5) k(@) = ¢(u) — A Y ri(x,a)z,(x,a) + Ad?(u),
and that
(6) lim — }j h(R,,R,)

m=1

= Y r(x,a)Z(x,a) — A Y ri(x,a)Z(x,a)

LA z_‘;r(x,a)Z(x,a)r

P,-almost surely. Taking the expectation of (6), employing Jensen’s inequality, and
comparing with (5) gives v(u) > k(n). o

ProrosiTiON 4. Let f be a stationary policy and let R, @q be the recurrent
classes associated with P(f). Denote (w*(1): x € R) for the equilibrium probability
vector associated with class i, i = 1,...,q. Further denote

W= Yr(x,a)yn () f(x,a).
x,a
Then

k(f) = ijpf(xn €% a.a.)) hlr(x,a), Zq)Pf(Xn € X a.a)y v () f(x,a),
x,a J=1

v(f) = L P(X, € R a.a) Lh[r(x,a), ] (f)f(x,a),
=1 x,a

where a.a. abbreviates almost always. If the MDP is unichain (in which case q=1and
we remove the subscript i), then

v(f) = k() = L hlr(x,a), d(O]7(f) f(x, a).

3.1. Decomposition and sample path theory. At this juncture it is convenient to
collect some results that will be needed in the subsequent sections.

A set €C .7 is said to be a strongly communicating class if: (i) € is a recurrent
class for some stationary policy; (ii) < is not a proper subset of some <" for which (i)
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564 MELIKE BAYKAL-GURSOV & KEITH W. ROSS

holds true. Let {#, ..., #;} be the collection of all strongly communicating classes.
Let & be the (possibly empty) set of states that are transient under all station-
ary policies. It is shown in [14] that {£),..., €}, 97} forms a partition of the state
space . (see also Bather [2] for a related decomposition). For each i = 1,..., I,
denote for each x € €, the set

F={laeA p, =0foralye &}

The following result is also proved in [14].

ProrosiTiON 5. For all policies u we have

7
) Y P(X,€ € aa)=1 and

=1

(8) Pu(An € Fy, aa.) =1

Foreachi = 1,...,1, define a new MDP, called MDP-i, as follows: the state space
is €); for each x € £, the set of available actions is given by the state dependent
action spaces #,; the law of motion p,,, and reward function r(x, a) are the same as
for the original MDP but restricted to ¢, and to the state dependent action spaces
., x € €, It is straightforward to show that MDP- is a communicating MDP for all
i=1,...,1. For MDP-, let v(u) be the expected time-average variability under
policy u.

For each i = 1,..., I, consider the following mathematical program with decision
variables z(x,a),a € &, x € €. Let §,, = 1if x =y and §,, = 0 otherwise.

Program T,.

t,=max y, Y. hlr(x,a), Y Y r(v.b)z(y,b)|z(x,a)

xe€ acF yETL, be S,
S.t.
Y ¥ (8, = Pray)z(x,a) =0, yeC,
X€€ ac F,
Z Z z(x,a) =1,
ngI aez
z(x,a) >0, ae %, x€4€.

For each n > 0, we will also need to refer to the following mathematical program
with decision variables z(x,a), x € .7, a € .

Program Q7.

g"=max ¥ T hlr(x.a), ¥ ¥ r(y,6)z(y.5)|z(x,a)

xeLacs yeSbed
s.t.
Z Z (3xy—'pxay)z(xaa)=0’ y € S,
xelacV
Z Z Z(x,a) = 1,
xeSacA
z(x,a) = n, xX€.”, ac .
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VARIABILITY SENSITIVE MARKOV DECISION PROCESSES 565

We will refer to the feasible regions of Program 7, and Program Q7 simply as 7, and
Q7", respectively. Note that the objective functions for both sets of the mathematical
programs are continuous functions over polytopes. Also note that T,i=1,...,1, and
that Q° are nonempty.

The following lemma provides bounds on »(u) and «(u). Only an outline of the
proof will be given since it is similar to the proof of Proposition 2 of {15].

Lemma 1. () Foralli=1,...,1and for all policies u we have

(9) P,| lim inf % Y WR,.R,)<tlX, €€ aa|=1;
nm m=1
consequently
I
(10) v(u) < Y 1,P(X, €€ a.a.)

=1

for all policies u. (i) v(a) < q° for all policies w; (iii) k(u) < q° for all policies u.

Proor.  Fix a policy u. Since 0 < Z,(x,a) < 1, it follows from standard compact-
ness arguments that for each w € Q there exists a subsequence {(N(w), k=1,2,...}
along which {Z,(x,a; w), n = 1,2,...} converges to some W(x, a; w) for all x € .7,
a € &/ With the aid of (8) it can then be shown that W(x,a), x€ €,ae F isa

feasible solution to Program 7, on the set ® = {X, € ¢ aa}—T, where I' is a set
of P,-measure zero. Thus,

(11) Y X nr(xa), ¥ ¥ r(y,0)W(y,b)|W(x,a) <1,

X€¥, ac F, YEC be T,

on ®. We also have

(12)  liminf % glh(Rm,l"e,,)

n-—c

1 M _
fim ;L 4R Ray)

K e

N

1 X
lim 7\/-,:'712:31/1(13,”, lim Ry,)

k—x

M) h[r@c,a), D) r(y,b)W(y,b)}W(x,a)

x€€ acF, ye¥ be S,

on ®. Combining (11) and (12) gives (9), and combining (9) with Proposition 5 gives
(10). A similar argument leads to ’

n
P“(liminf nl 2 h(R,.R,) < qO) =1,
m=1

n-— oo
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566 MELIKE BAYKAL~-GURSOV & KEITH W. ROSS

from which (i) follows. The proof for (iii) is also similar to (i) except we use a limit
point of {E [Z,{(x,a@)): n = 1,2,...} in place of W(x,a). O

4. The communicating case. Throughout this section we assume that the MDP
is communicating. This implies that there is only one strongly communicating class
and that .= €,. The analysis of this section draws on results and observations from
[15].

The following example illustrates some of the subtleties that can arise in the
communicating case.

Exampii 2. Consider the MDP with state space {0, 1,2} depicted in Figure 1. In
the middle state 1 there is only one action available: it brings the state process to
state 0 with probability 0.5 and to state 2 with probability 0.5. States 0 and 2 each
have two actions: action 1 keeps the process in the current state with probability 1;
action 2 moves the process to the middle state 1 with probability 1. Let r(x,a) =x
for x = 0,1,2 and let the initial state be state 0. Let the variability function be given
by A(x, y) = (x — y)? so that we are maximizing the variance. It is not difficult to see
that »(f) = k(f) < 1 for all stationary policies f, and that sup; .  »(f) = 1. Thus there
does not in general exist an optimal stationary policy for either v(u) or k(u). O

We can, however, obtain several positive results. To this end define for each z
belonging to QU

g(z)= ¥ Y hir(x,0), L X r(y,b)z(y,b)|z(x,a) and

xefacA ye S bed
I,={x € .”: z(x,a) > 0 for some a e &}.

For each z belonging to Q° construct a stationary policy f as follows: If x € I, let

f(x,a) = . z(x,a)

ae.g{z(x’a) ’

if x & I, choose actions in a deterministic way so that the state process eventually
enters I, (this can be done since the MDP is communicating).

LemMa 2. Let z be a feasible solution for Program Q° and let £ be defined as
above. If P(f) is unichain, then v(f) = k() = g(z).

Proor. Suppose that P(f) is unichain. A standard argument gives z(x,a) =
(O f(x, a) for all x € /~, a € &, where [#*(f): x € #]]is the equilibrium vector

FiGure 1. A Communicating MDP Which Does Not Have an Optimal Stationary Policy.
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associated with P(f). Thus

il

g(z)

xeSacA yeLbes

Y ¥ h[r(x,a), Y ) r(y,b)z(y,b)}z(x,a)

MDY h[r(x,a), MY r(y,b)#”(f)f(y,b)]ﬂf‘(f)f(x,a)

x€SacA yeSbey

v(f) = «(f),

where the last two equalities follow from Proposition 4. o

For a communicating MDP, Q7 is nonempty for all n € [0, 8] for some & > 0. Now
for each 5 [0, 8], let z”7 be an optimal solution to Program Q7. If there is an
optimal extreme point solution to Program QY, further require z° to be an extreme
point. For each n €1{0,8], let 7 be defined from z" according to the above
transformation.

I

THeorReM 1. Fix € > 0. If the MDP is communicating, then for n > 0 sufficiently
small the stationary policy £7 is e-optimal for v(v) and x(w). If, in addition, h(x, y) =
x — Ax — y)* with A > 0, then the policy £° is a pure policy and is optimal for both
v(u) and k(u).

Proor. In order to prove the first statement we note that P(f") is unichain for all
n € (0, §]. Thus, by Lemma 2,

(13) v(f7) = x(f7) = g(2")

for all n € (0,8]. Also note that since g(z) is continuous over QV, there is a
neighborhood of z° such that g(z) > q° — € for all z in the neighborhood. It is easily
seen that there exists a z' that belongs to this neighborhood and to Q7 for some
v > 0 sufficiently small. Thus

(14) g(2) > g(2) > q° ~ .

Combining (13) and (14) with Lemma 1 establishes the e-optimality of £ for »(u) and
().

In order to prove the second statement, we note that for this choice of A(-, - ) the
objective function g(z) is convex over Q°. Therefore, we may choose z" as an optimal
extreme point for Program Q". This property implies that f° is a pure policy and that
P(f") is unichain (e.g., see [6]). The proof is then completed by again invoking
Lemmas 1 and 2. 0

1t follows from the above proof that if P(f%) is unichain, then f° is optimal for both
v(w) and «(u) (but is not necessarily pure). This condition will always be satisfied if
the MDP itself is unichain. It also follows from the above proof that if g(z) is convex
over Q°, then the policy £° is pure and optimal for v(u) and «(u).

From Theorem 1 we see that the two criteria, v(u) and «(u), are quite similar for
communicating MDPs as they share the same e-optimal (or optimal) policy. But it is
interesting to note that we still may have v(g) # k(g) for a pure policy g for a
communicating MDP. Indeed in Example 2, if the initial state is the middle state 1
and if g chooses action 1 at both of the side states 0 and 2, then 0 = v(g) # x(g) = 1.

5. Multichain MDPs. In this section we impose no restrictions on the law of
motion p,,., x € 7, a € &, y € . We now construct a stationary policy that is
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568 MELIKE BAYKAL-GURSOV & KEITH W. ROSS

e-optimal for v(u). For the case of A(x,y) =x — A(x — y)* with A > 0, the policy
becomes an optimal pure policy. Since many of the arguments are similar to those in
[14], only outlines of the proofs will be given.

Recall that MDP-i is communicating. By Theorem 1 we can therefore construct for
each i=1,...,] an e-optimal stationary policy f, for MDP-i. In the case of
h(x,y) =x — AMx — y)? with A > 0, f, becomes an optimal pure policy for each
i =1,..., 1 Recall that ¢, is the value of Program 7,, i = 1,..., 1. We also need to
consider the problem of finding a policy that maximizes the following time-average
expected reward:

B(u) = liminf % Y E,

m=

i tll(Xn e é):i "

We refer to this problem as the intermediate MDP. It is well known that there exists
an optimal pure policy g* for this problem which can be found by policy improve-
ment, value iteration, or linear programming. Let

H = {i: €, contains a recurrent class under P(g*)}.

Modify g* so that €, is closed for each 1 € H and so that g* remains optimal for the
intermediate MDP (see [14]).
We now construct a stationary policy £* as follows: when in state x € €, i € H,

apply f; otherwise, apply g*. Our main result is

TueoreM 2. The stationary policy t* is e-optimal for v(u). Moreover, if h(x, y) =
x — Mx — y)? with A > 0, then the policy £* is a pure policy and it is optimal for v(u).

Proor. Employing (7) it can be shown that

B(w) = T LP(X, € € )

=1
for all policies u. Thus, from Lemma 1 we have
(15) v(u) < B(g*)
for ali policies u. From Proposition 4 and the construction of £* we have

(16) v(F¥) = Z]:vl(f,)Pg*(Xn € % aa.).

=1

Combining (15) and (16) with Theorem 1 gives the desired results. o

5.1. Computational considerations. In order to construct the e-optimal (respec-
tively optimal) stationary (respectively pure) policy £* for the expected time-average
variability criterion we can use the following recipe.

1. Determine the strongly communicating classes €,,i = 1,..., L.

2. Solve Program 7, for i =1,...,I and obtain policies f,, i =1,...,I and
optimal values ¢,, i = 1,..., I

3. Solve the intermediate MDP and obtain g* and H. Then combine g* with f,
i € H, to get the e-optimal (or optimal) policy f*.

Step 1 can be done with a graph-theoretic algorithm that is outlined in [14]. Its
worst case complexity is O(.7|*|.o7].
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The intermediate MDP problem in Step 3 can be solved by standard MDP
algorithms. Computational savings can be obtained, however, by observing that the
reward function for the intermediate MDP is constant over € foreachi=1,..., 1L
This enables one to aggregate all states in ¢, into one state for each i = 1,..., [ and
solve an MDP with I + |97| states with one of the standard algorithms. This
aggregated MDP is discussed in [14].

Now consider the problem of solving Program 7, for a fixed i. In general the
objective function of Program T, can have numerous local maxima within the feasible
region, in which case the problem is difficult to solve. However, Katoh and Ibaraki
[12] have shown that if the objective function for this class of mathematical programs
possesses a certain quasi-convexity property, then the problem of solving Program T,
becomes quite tractable. (See also Sobel [16] for a related approach; also see the
references within [12].) For example, suppose that A(x, y)=x — AMx — y)? with
A > 0. Then the objective function of Program 7, takes the form

g(z) = fi(2) + Af2(2), where

fi@) = X [r(x,a) — ar¥(x,a)] 2(x, a),

f2(2) = Xr(x,a)z(x,a).

x,a

For y = 0 let
sy(z) =fi(z) + vfy(2)

= Y [r(x,a) = Ar’(x,a) + yr(x,a)|z(x,a),

X, d

and consider the problem of maximizing sy(z) over 7,, henceforth referred to as
problem P(y). Since g(-) is a convex function of fi(-) and £,(+), it follows from
Theorem 2 of [12] that there exists a y > 0 such that the optimal z for P(y) is also
optimal for Program T7.. Thus, we can find an optimal solution to Program T, by
solving P(y) for all y > 0 and checking to see which of these optimal solutions
maximizes g(z). But for fixed y, P(y) is a linear program! Moreover, P(y) can be
readily solved for all y > 0 with parametric linear programming.

6. Choice-of-initial-state optimality. In many MDP applications, the decision
maker not only chooses a policy u, but also chooses the initial state x € . in order
to maximize the objective. In the context of risk-sensitive time-average MDPs, Sobel
[16] considers this problem and gives an example from inventory theory. We now
show how the decomposition and sample path theory lead to an alternative approach
to solve this problem.

Denote P} for the probability measure corresponding to policy u and initial state
x. In order to emphasize the dependence on the initial state x € *, we write in this
section »*(u) and «*(u) for the two variability criteria. Let J be such that

t,=max{t:i=1,...,1},

and recall the definition of the stationary (possibly pure) policy £ | for MDP+j. Extend

the definition of f, to the original MDP by defining f, to be deterministic but

otherwise arbitrary in #— ¢

e
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THEOREM 3. Suppose the decision maker can choose the initial state x € 7 as well
as the policy uw € U. Then the stationary policy £, along with any initial state A € € is
e-optimal for v<(w). Moreover, if h(x,y) = x — Mx — v)? with A > 0, then £* is pure
and optimal for v*(u) and «k*(u).

Proor. From Lemma 1 we have

1
(17) vi(u) < Y4 PN(X, € € aa) <t

1=1

for all policies u and all initial states x & 7. But from Theorem 1 we have
vA(f j) >t — € for all Ae @, This establishes the first statement. We have from
Theorem 1 that if #(x, y) = x — A(x — y)?, with A > 0, then f, is pure and vA:() =
KA )=t forall Ae €,. Combining this with (17) and Proposition 3 establishes the
second statement. O

Note that the choice-of-initial-state problem is easier to solve than the original
problem of maximizing »(u) over u € U since it is not required to solve an intermedi-
ate MDP. This technique can also be employed to solve the choice-of-initial-state
problem for MDPs with sample path constraints.

7. Conclusion. Let us now take stock of what we know about time-average
MDPs with variability sensitive criteria. Throughout this discussion we assume that
the initial state is fixed and given.

First consider the time-average expected variability «(u). In general there does not
exist an e-optimal stationary policy for «(u). (This has not been shown. The claim can
be verified by considering Example 1 of [15] with A(x, y) = (x — y)%) But if the
variability function takes the specific form A(x, y) = x — A(x — y)? with A > 0, then
there exists an optimal pure policy, albeit the only known algorithm to locate it is
complete enumeration of all pure policies. If the MDP is either communicating or
unichain and if A(x,y) =x — A(x — y)* with A > 0, then there exists an optimal
pure policy which can be obtained from the solution of a parametric LP. For general
h(-, - ) an optimal (respectively e-optimal) policy can be found for unichain (respec-
tively communicating) MDPs by solving the mathematical program Q° (respectively
mathematical programs Q7, n > 0).

Now consider the expected time-average variability »(u). In general there exists an
e-optimal stationary policy which can be obtained from the decomposition algorithm
outlined in §5. If A(x, y) = x — A(x — y)* with A > 0, then there exists an optimal
pure policy which can again be obtained from the decomposition algorithm; more-
over, in this case each restricted MDP can be solved with parametric LP. For
communicating and unichain MDPs the results are the same as for «(u), and the
e-optimal and optimal policies are the same for the two criteria.

We end this paper with a list of problems that remain open for time-average MDPs
with variability sensitive criteria.

1. In the general multichain case with A(x, y) =x — Ax — y)?, A > 0, can we find
an efficient algorithm to locate the optimal pure policy for x(u)?

2. What variability functions, besides h(x,y) =x — Ax —y), A >0, lead to
optimal pure policies? In particular, do the variability functions h(-, - ) discussed in
§3 give rise to optimal pure policies?

3. Can the results be extended to MDPs with infinite state or action spaces?
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