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Protecting infrastructures against terrorist attacks involves making both strategic and operational decisions

in an organization’s hierarchy. Although usually analyzed separately, these decisions influence each other. To

study the combined effect of strategic and operational decisions, we present a game-theoretic, two-stage model

between a defender and an attacker involving multiple target sites. In the first stage, the defender (attacker)

makes a strategic decision of allocating investment resources to target sites in order to improve the defense

(attack) capabilities. We consider two cases for investments in the first stage: 1) unconstrained, 2) budget

constrained models. The investment allocations for each target site determine its detection probability.

In the second stage, the players make operational decisions of which target site to defend or to attack.

We distinguish between two types of games that arise in the second stage: Maximal Damage game and

Infiltration/Harassment game. We prove that the solution to this game under budget constraints is unique.

In fact, when the second stage game is of Infiltration/Harassment type, the invest-defend game has a unique

closed-form solution that is very intuitive. The results reveal that an increase in defense investments on

a target site decreases the probability of both defending and attacking that target. However, an increase

in attack investments increases the probability of both defending and attacking that target. Similarly, an

increase in the defender’s (attacker’s) investment efficiency leads to a decrease (increase) in investments of

both the defender and the attacker. Finally, the model is applied to real data to obtain the equilibrium

investment and defense strategies. The results from real data demonstrate that the attacker’s penalty from

a failed attack is an important factor in determining the defender’s optimal distribution of investments and

defense probabilities. The defender’s second stage defense decisions complement the first stage investment

decisions. That is, among target sites that receive little or zero investment, the most important one is covered

with a relatively high defense probability in the second stage. Moreover, as the attacker’s budget increases,

the defense investments shift from less important sites to the more important ones.

Key words : terrorism and counter terrorism, infrastructure security games, budget constraint, two-stage

game, strategic decision making, sequential game, simultaneous game
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1. Introduction

Terrorist attacks are a growing global concern. Every year, thousands of people lose their lives,

get injured or kidnapped as a result of such attacks. In 2015, a total of 11,774 terrorist attacks

occurred worldwide, resulting in more than 28,300 deaths and more than 35,300 injuries (Bureau

of Counterterrorism 2016). Other than physical injuries, the psychological impact of the continued

threat of terrorism is also considerable. Such incidents create fear, panic, anxiety and distress in

the society. In response, counter-terrorism has received considerable attention from international

institutions and national governments. Disastrous events such as the attacks in Madrid, London,

Bali, Mumbai and others have placed counter-terrorism high on the political agenda. As a result,

many governments reacted by raising their budgets for anti-terrorism spending. However, deterring

terrorism is generally expensive and deciding how to allocate resources in order to protect critical

infrastructures is a difficult problem. Many factors affect resource allocation, such as target attrac-

tiveness, creating a balance between protecting against different types of threats (e.g., biological

attacks versus bomb attacks), or equal distribution of federal resources among targets for fairness

considerations (Shan and Zhuang 2013a).

Different approaches have been proposed to model strategic interactions in security problems,

these methods include system analysis (Paté-Cornell and Guikema 2002), mathematical modeling

(Harris 2004) and probabilistic risk analysis methods (Kaplan and Garrick 1981, Paté-Cornell 2002,

Paté-Cornell and Guikema 2002, Garrick et al. 2004, Garcia 2005, McGill et al. 2007). However,

since the terrorists can also be strategic in their attacks, game theoretic analysis of such attacks

yields more realistic results. Therefore, recent studies concentrate on developing game theoretic

models to capture terrorism risk and using the solutions of these models in enhancing security

measures. Hausken (2002) incorporates a game theoretic dimension into probabilistic risk analysis.

Other investigators study such game theoretic models under different system structures (Hausken

2009, 2010), defense measures (Levitin and Hausken 2009, Peng et al. 2010) and attack tactics

(Garnaev et al. 2014, Hausken and Levitin 2009, Hausken and Bier 2011). For a review of defense

and attack models, see Hausken and Levitin (2012).

Protecting infrastructures against terrorist attacks involves decision making at different levels

in an organization’s hierarchy: strategic and operational decisions. The strategic decisions are long

term decisions with long lasting effects. For example, investment decisions on “hardening” (Bier

* This material is based upon work supported by the National Science Foundation under Grant No.1436288
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and Abhichandani 2002) the target sites to decrease the success probability of attack is classified

as a strategic decision. These decisions include investment on new technologies to enhance security

of a site. On the other hand, the operational decisions are short term decisions that relate to the

routine day-to-day operations such as patrolling, assigning first responders, and scheduling vehicle

checkpoints. Note that the word “strategic” can also be used to describe players. In this context,

we will refer to a rational player whose objective is to maximize her/his payoff as a “strategic

player”.

Most research only focus on either purely strategic decisions (Hausken and Zhuang 2011, Nikoofal

and Zhuang 2012) or purely operational decisions (Baykal-Gürsoy et al. 2014, Garnaev et al. 2014,

2015, 2016). Strategic decisions are considered by Nikoofal and Zhuang (2012) who present a game

in which a defender makes a strategic decision of allocating resources to harden a set of target

sites in order to minimize the maximum damage of an attack. Hausken and Zhuang (2011) analyze

a two-stage resource allocation game between a government and a terrorist. In this Stackelberg

game, the government moves first and allocates its resources between attacking to downgrade

the terrorist’s resources and defending against the terrorist attack. Then, the terrorist allocates

his resources between attacking and defending options. Other papers study strategic decision of

resource assignment to protect targets against attacks (Zhuang and Bier 2007, Shan and Zhuang

2013b, Guan et al. 2017). In the context of making strategic decisions in security, several papers

investigate multi-period models in which similar strategic decisions are made throughout multiple

periods (Zhuang et al. 2010, Hausken and Zhuang 2011, Jose and Zhuang 2013, Shan and Zhuang

2017). Hence, the primary focus is on the effect of timing of these decisions. Baykal-Gürsoy et al.

(2014) consider an infrastructure containing multiple target sites with a single defender and a single

attacker. The defender and the attacker make operational decisions of which site to defend and

attack, respectively. Each target site has a given “detection probability” of detecting and thwarting

an attack, if both players choose the same site. Garnaev et al. (2014) study operational decision

of which sites to defend/attack with consideration given to the uncertainty of the attack type.

Shan and Zhuang (2014a) analyze the defender’s operational decisions such as container screening

rate to deter nuclear smuggling. They demonstrate how inspection rates should be modified in the

presence of non-credible retaliation threats. There are other articles in the literature that focus on

purely operational decisions such as allocating defenders (Garnaev et al. 2016), patrolling (Pita

et al. 2008, Shieh et al. 2012, Yolmeh and Baykal-Gürsoy 2018) and scheduling (Tsai et al. 2009).

Even though most researchers study purely strategic or purely operational decision models, these

decisions influence each other. For instance, installing a CCTV camera in a certain area might

render patrolling that area unnecessary. Or allocations of metal detectors and screening systems to

target sites may affect optimal scheduling of patrol units among those targets. Moreover, investing
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in a new technology to enhance security of a certain target site may reduce its target attractiveness

and affect the optimal probability of defending that target. Therefore, considering strategic and

operational decisions in the same model would yield a more holistic analysis.

In this paper, we consider both strategic investment decisions and operational defense/attack

decisions simultaneously in a comprehensive model and investigate the interaction between these

decisions. Specifically, we introduce a two-stage invest-defend game in which, at the first stage,

the defender and the attacker make strategic decisions of investing on a set of target sites. This

is followed by the second stage game in which the players make operational decisions of which

target site to defend or attack. We consider two types of models for investments in the first stage:

unconstrained model and budget constrained model. In the unconstrained model, investments are

not limited by a fixed budget, however, there is a disutility associated with each investment. We

assume that both players are able to make investments to affect the detection probability of specific

targets. Although the defender’s investments to harden targets have been studied extensively in

literature (as reviewed earlier in this section), the attacker’s investments to weaken targets have

received little attention. However, in reality, attackers also make investments on targets to increase

their vulnerability. For example, terrorists tend to follow a planning cycle for their attacks in

which they perform extensive surveillance operations to obtain target specific information (United

States Army 2010). Some of these operations may take several months to complete and need long

term investments to be successful (Smith et al. 2017). Moreover, they may invest in special training

programs to attack specific targets. For example, 9/11 terrorists received training in piloting air

crafts so that they could use them as weapons to destroy targets that otherwise would have been

harder to destroy. At the second stage, the defender and the attacker make operational decisions

of which target to defend and attack, respectively. We consider two types of games at the second

stage: Maximal Damage game and Infiltration/Harassment game. Maximal Damage game happens

when each target has a different value. Infiltration/Harassment game happens when all targets have

the same value. Therefore, in the Infiltration/Harassment game, the players cannot differentiate

targets except according to their vulnerability to attacks. These game types have been studied

in Garnaev et al. (2015, 2014, 2016) and Yolmeh and Baykal-Gürsoy (2017). Different types of

players have also been studied in Shan and Zhuang (2014b) and Garnaev et al. (2016). Figure 1

summarizes our results for different first stage investment models and second stage target value

models.

Hausken and Levitin (2012) review defense and attack models and propose a three dimensional

classification scheme based on the system structure, defense measures and attack tactics. We use

this classification method to locate our proposed model along these three dimensions. In our pro-

posed model, there are multiple targets that are not linked in any particular way. Therefore, we
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Figure 1 Summary of paper’s contributions

can categorize the system as “multiple elements” (option 6). Moreover, in our proposed model, the

defender first invests on targets to harden them, then assigns a single first responder to protect

them. This can be categorized as multi-level defense (option 5). Similarly, the attacker first invests

on targets to make them vulnerable to attack, then chooses a target to attack. This can be catego-

rized as sequential (consecutive) attacks (option 3). To the best of our knowledge, a system with

multiple elements, multi-level defense strategy and sequential attacks has not been studied in the

literature of defense and attack models. The contribution of this paper is to capture strategic and

operational decisions in a comprehensive two-stage game model and study the interaction between

these decisions. One of the challenges of combining these decisions is proving the existence and

uniqueness of the Nash equilibrium for the overall game model. This requires solving for the Nash

equilibrium using backward induction method. Since we are looking for analytic results, finding

the Nash equilibrium for the two-stage game involves first developing a closed form solution for

the second stage problem to be then used in the first stage game. We present analytical results

about the existence and uniqueness of the equilibrium for our proposed game. We then apply our

approach to real data. The results of the proposed model can be implemented to determine the

optimal defensive resource allocation strategy among target sites.

The remainder of the paper is organized as follows. In section 2, the problem under consideration

is described and notations are introduced. In section 3, the two-stage invest-defend game is solved

using the backward induction method. In section 4, the proposed approach is applied to the real

data from 10 most important urban areas in the US. Main conclusions of the paper and future

research suggestions are presented in section 5.

2. Problem Description and Notations

We consider a two-stage invest-defend game between a single defender and a single attacker. We

assume that both players are fully rational and they aim to maximize their own payoffs. In the
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first stage, both the defender (she) and the attacker (he) simultaneously make strategic decisions

of investing on targets to change the detection probabilities in their own favor and then in the

second stage, they make simultaneous operational decisions of selecting which target to defend and

attack, respectively.

Each target has a value of Ci, for i= 1,2, . . . ,N, with N denoting the number of targets. This

value could be determined by occupancy levels or any other valuation criterion, e.g., monetary

or political value. We assume that the attacker’s target valuations are the same as the defender’s

valuations as in Powell (2007), Golany et al. (2009), Shan and Zhuang (2013a) and Shan and

Zhuang (2013b). While we acknowledge that the attacker may value targets differently, using the

same target valuations for the attacker results in a game in which the players’ payoffs are in opposite

direction and this is useful as a worst case analysis. Wang and Bier (2011) use multi-attribute

utility functions to model the attacker’s preferences.

The second stage game is a matrix game in which players make operational decisions of choosing

which target to defend or attack. If the defender defends target i and the attacker attacks j, j 6= i,

a successful attack on target j will be launched. Therefore, payoff to the defender will be −Cj and

the attacker receives a payoff of Cj. However, if both players choose the same target i, the attacker

will be detected (and thwarted) with probability di. We assume that the attacker suffers a penalty

of P in case of a failed attack. Therefore, the defender’s payoff is − (1− dj)Cj and the attacker’s

payoff is (1− dj)Cj − djP . This means that even when both rivals are at the same site, there is a

probability that the defender may not be able to detect the attacker. Other studies have modeled

detection in different contexts such as deterring smuggling of nuclear weapons carried in containers

(Haphuriwat et al. 2011), detecting concealed targets (Levitin 2009), identifying the genuine target

among false targets (Levitin and Hausken 2010) and detecting outcome of attacks (Levitin and

Hausken 2012b,c).

The objective of each player at the first stage is to maximize his/her own total payoff, which

is equal to the sum of payoffs from the first and second stages. If Ci =C, ∀i= 1, . . . ,N, then the

second stage game is called the Infiltration/Harassment game, otherwise it is called the Maximal

Damage game.

The parameters of our model are listed as follows:

• N : number of target sites.

• Ci : value of site i. We can, without loss of generality, assume that Cis are sorted in a decreasing

order, i.e., C1 >C2 > . . . > CN , in the Maximal Damage game and Ci =C, for all i= 1,2, . . . ,N, in

the Infiltration/Harassment game.

• P : penalty of an unsuccessful attack for the attacker.

• A : total budget for defensive investments in the budget constrained model.



Yolmeh and Baykal-Gürsoy: Two-stage invest-defend game: balancing strategic and operational decisions

Article submitted to Decision Analysis; manuscript no. (Please, provide the mansucript number!) 7

• B : total budget for attack investments in the budget constrained model.

Decision variables and functions that use these variables are listed as follows:

• αi (strategic decision of the defender): amount of investment expended on defending site i in

the first stage, where 0≤ αi <∞ for all i= 1, ...,N . Let α= (α1, α2, ..., αN) represent the defensive

investment vector.

• βi (strategic decision of the attacker): amount of investment expended on attacking site i in

the first stage, where 0 ≤ βi <∞ for all i = 1, ...,N . Let β = (β1, β2, ..., βN) represent the attack

investment vector.

• di(αi, βi) : probability of detection at site i in the second stage. Assume that di(αi, βi) is a

continuous, strictly increasing and concave function of defensive investments in the first stage, i.e.,

αi. Also assume that di(αi, βi) is a continuous, strictly decreasing and convex function of attack

investments in the first stage, i.e., βi.

• x= (x1, x2, . . . , xN)( operational decision vector of the defender): mixed policy of the defender

with xi denoting the probability of defending site i in the second stage, with 0 ≤ xi ≤ 1, for all

i= 1, . . . ,N, and
∑N

i=1 xi = 1.

• y = (y1, y2, . . . , yN)( operational decision vector of the attacker): mixed policy of the attacker

with yi denoting the probability of attacking site i in the second stage, with 0 ≤ yi ≤ 1, for all

i= 1, . . . ,N, and
∑N

i=1 yi = 1.

• ud1(α) : first stage payoff to the defender in the unconstrained model, which is defined as

ud1(α)≡−
∑N

i=1αi.

• ud2(α,β,x, y) : second stage payoff to the defender, which is given by ud2(α,β,x, y) ≡

−
∑N

i=1 (Ci(1− di(αi, βi)xi)yi) (Baykal-Gürsoy et al. 2014).

• udt (α,β,x, y) : total payoff to the defender. In the unconstrained model, the defender’s

total payoff is given by udt (α,β,x, y)≡ ud1(α) + ud2(α,β,x, y). In the budget constrained model,

the defender’s total payoff is given by udt (α,β,x, y) ≡ ud2(α,β,x, y) with the budget constraint∑N

i=1αi ≤A.

• ua1(β) : first stage payoff to the attacker in the unconstrained model, which is defined as

ua1(β)≡−
∑N

i=1 βi.

• ua2(α,β,x, y) : second stage payoff to the attacker, which is ua2(α,β,x, y) ≡∑N

i=1 (Ci(1− di(αi, βi)xi)− di(αi, βi)xiP )yi.

• uat (α,β,x, y) : total payoff to the attacker. In the unconstrained model, the attacker’s total

payoff is given by uat (α,β,x, y) ≡ ua1(β) + ua2(α,β,x, y). In the budget constrained model, the

attacker’s total payoff is given by uat (α,β,x, y) ≡ ua2(α,β,x, y) with the budget constraint∑N

i=1 βi ≤B.



Yolmeh and Baykal-Gürsoy: Two-stage invest-defend game: balancing strategic and operational decisions

8 Article submitted to Decision Analysis; manuscript no. (Please, provide the mansucript number!)

We assume that players make their decisions simultaneously at both stages, in other words, at

each stage, the players will not know their opponent’s decision before making their own. However,

first stage decisions will be revealed to both players at the beginning of the second stage. Due to

the long-term nature of strategic decisions, they cannot be reversed. Therefore, it is reasonable

to assume that the first stage strategic decisions can be learned through surveillance. For the

defender’s strategic decisions, this is a reasonable assumption and the attacker can observe the

defender’s strategic decisions using surveillance. For the attacker’s strategic decisions, we assume

that the defender is able to learn about the attacker’s strategic decisions through espionage.

Definition. A strategy profile (α∗, β∗, x∗, y∗) is a subgame perfect Nash equilibrium if and only

if

x∗ ≡x∗(α,β)≡ arg max
x

{
ud2(α,β,x, y

∗)
}
, (1)

y∗ ≡ y∗(α,β)≡ arg max
y

{ua2(α,β,x∗, y)} , (2)

α∗ ≡ arg max
α

{
udt (α,β

∗, x∗(α,β∗), y∗(α,β∗))
}
, (3)

β∗ ≡ arg max
β

{uat (α∗, β,x∗(α∗, β), y∗(α∗, β))} . (4)

3. Solving the Two-Stage Invest-Defend Game

To solve this game, we use the backward induction method and start from the last stage, i.e., the

second stage. The second stage game is solved assuming fixed values for the first stage decisions,

(α,β), and the equilibrium policy of each player in the second stage, x∗ and y∗ are obtained in

terms of (α,β). The second stage equilibrium, (x∗, y∗), is then used in the first stage game to

compute the first stage equilibrium.

3.1. Second stage game

At the second stage game, the first stage decisions, i.e., strategic decisions (α,β), are assumed to

be fixed parameters and the second stage decisions, i.e., operational decisions (x,y), are made.

The following matrix demonstrates the payoff to both players:



i \ j 1 2 · · · N

1 −(1− d1)C1, (1− d1)C1− d1P −C2,C2 · · · −CN ,CN
2 −C1,C1 −(1− d2)C2, (1− d2)C2− d2P · · · −CN ,CN
...

...
...

. . .
...

N −C1,C1 −C2,C2 · · · −(1− dN)CN , (1− dN)CN − dNP


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In this matrix, the first element is the payoff to the defender and the second element is the payoff

to the attacker. If we assume that P = 0, then this matrix game turns into a zero-sum game, i.e.,

ud2(α,β,x, y) =−ua2(α,β,x, y). For this zero-sum game, Baykal-Gürsoy et al. (2014) give a unique

saddle-point equilibrium. In this section, we extend their result to the case where the attacker

suffers a penalty for an unsuccessful attack, i.e., P > 0.

Theorem 1. The Nash Equilibrium for the second stage game is given in terms of an index

k ∈ {1, . . . ,N} such that φk(α,β) ≤ 1 < φk+1(α,β), where φi(α,β) is defined as φi(α,β) =∑i

j=1

Cj−Ci
dj(αj ,βj)(Cj+P )

for i∈ 1, . . . ,N and φN+1(α,β) =∞. The strategy of the defender is of thresh-

old type as given below

x∗
i =



1

di(αi, βi)(Ci +P )∑k

j=1

1

dj(αj, βj)(Cj +P )

(
1−

∑k

j=1

Cj−Ci
dj(αj ,βj)(Cj+P )

)
, i≤ k,

0, i > k.

(5)

The strategy of the attacker is also of threshold type:

y∗i =



1

di(αi, βi)Ci∑k

j=1

1

dj(αj, βj)Cj

, i≤ k,

0, i > k,

(6)

and the equilibrium payoffs are given as:

ud∗2 (α,β)≡ ud2(α,β,x∗, y∗) =

1−
∑k

j=1

1

dj(αj, βj)∑k

j=1

1

dj(αj, βj)Cj

, (7)

ua∗2 (α,β)≡ ua2(α,β,x∗, y∗) =−
1−

∑k

j=1

Cj

dj(αj, βj)(Cj +P )∑k

j=1

1

dj(αj, βj)(Cj +P )

. (8)

Proof. See Appendix A.1. �

Remark 1. If C1 = · · ·=CN =C, i.e., the second stage game is of Infiltration/Harassment type,

then the Nash Equilibrium requires the use of all target sites, since φi(α,β) = 0, ∀i= 1, . . . ,N , i.e.,

k =N. In fact, in this case the defense and attack probabilities are proportional to the reciprocal

of the detection probability, i.e., 1/di(αi, βi) as

x∗
i = y∗i =

1
di(αi,βi)

M
, ∀i= 1, . . . ,N, (9)
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and the payoff functions for the defender and the attacker at the second stage are given respec-

tively as

ud∗2 (α,β)≡ ud2(α,β,x∗, y∗) =−C +
C

M
, (10)

ua∗2 (α,β)≡ ua2(α,β,x∗, y∗) =C − C +P

M
, (11)

where M =
∑N

j=1

1

dj(αj, βj)
.

Corollary 1. An increase in the attacker’s investment on site i, i.e., βi, leads to an increase

in probabilities of both attacking and defending site i. However, an increase in the defender’s

investment on site i leads to a decrease in probabilities of both attacking and defending site i.

Proof. By definition, an increase in βi leads to a decrease in di(αi, βi), implying an increase in

1/di(αi, βi), which in turn, increases y∗i by equation 6, and increases x∗
i by equation 5. Similarly

we can prove the effect of increasing αi on x∗
i and y∗i . �

Remark 2. The effect of an increase in the defender’s investment on site i, seems counter-

intuitive at first. However, it can be explained with intuitive arguments. An increase in the

defender’s investment will lead to a decrease in the attack probability, therefore the defender will

decrease her defence probability. In other words, knowing that the attacker is less likely to attack

a site leads the defender to defend that site with lower probability. In the extreme situation, if the

defender knows that the attacker will never attack site i, then the defender will never defend that

site.

3.2. First stage game

Knowing the outcome of the second stage, we can immediately write down the payoff functions at

the first stage for both players. We consider two models: unconstrained and budget constrained

models. Below we will discuss each model separately.

3.2.1. Unconstrained Model In this model, there are no budget constraints. However, the

players incur investment disutility which is considered in the players’ respective payoff functions.

Hence, the payoff functions are defined as:

udt (α,β) = ud1(α) +ud∗2 (α,β) =−
N∑
i=1

αi +

1−
∑k

j=1

1

dj(αj, βj)∑k

j=1

1

dj(αj, βj)Cj

, (12)

uat (α,β) = ua1(β) +ua∗2 (α,β) =−
N∑
i=1

βi−
1−

∑k

j=1

Cj

dj(αj, βj)(Cj +P )∑k

j=1

1

dj(αj, βj)(Cj +P )

. (13)
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In equation 12, the first term, ud1(α), is the first stage payoff to the defender and corresponds

to the investment disutility and the second term, ud∗2 (α,β), is the second stage payoff, which is

the expected payoff in equilibrium at the second stage game. Similarly, in equation 13, the first

and second terms correspond to the attacker’s payoff at the first and second stage of the game,

respectively. The following lemmas characterize the conditions under which the payoff functions

are continuous and concave.

Lemma 1. If P = 0 or if the second stage game is of Infiltration/Harassment type, i.e., C1 =

· · ·=CN =C, then udt (α,β) and uat (α,β) are continuous in α and β.

Proof. See Appendix A.2. �

Lemma 2. If P = 0 or if the second stage game is of Infiltration/Harassment type, then udt (α,β)

and uat (α,β) are strictly concave in each αi and βi, respectively.

Proof. See Appendix A.3. �

Lemma 3. If the second stage game is of Infiltration/Harassment type, then utd(α,β) and

uta(α,β) are concave in α and β, respectively.

Proof. See Appendix A.4. �

The following theorem characterizes the conditions under which there exist a Nash equilibrium

for the two-stage invest-defend game.

Theorem 2. If the second stage game is of Infiltration/Harassment type, then the overall invest-

defend game has a Nash Equilibrium.

Proof. It is easy to confirm that the strategy spaces for both players are compact and convex

(note that investment values are bounded). In Lemma 1 and Lemma 3 we have established that the

payoff functions for both players are continuous and concave with respect to their own strategy.

Therefore, applying Debreu’s existence theorem (see Debreu (1952) ), there exist at least one Nash

equilibrium. �

Remark 3. Proving the uniqueness of Nash equilibrium is challenging, however, based on some

numerical experiments, we conjecture that it is true.

We now consider the following detection probability function:

di(αi, βi) =
ediαi +Li

ediαi + eai βi +Ui
, 0≤Li ≤Ui, Ui 6= 0. (14)

This function is of the form of a contest success function (Skaperdas 1996). Contest success functions

have been used by many researchers to model probability of detecting and thwarting attacks

(Levitin 2009, Levitin and Hausken 2009, 2010, Garnaev et al. 2016). In this formula, parameters
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edi > 0 and eai > 0 are investment efficiency factors of site i for the defender and the attacker,

respectively. Parameters Li and Ui are there so that even if both investment efforts are zero, there

is a baseline probability of detection that is non-negative and less than or equal to zero. Clearly,

0≤ di(αi, βi)≤ 1. This function satisfies our assumptions for a detection probability function, i.e.,

it is a continuous, strictly increasing and concave function of defensive investments, αi, and it is a

continuous, strictly decreasing and convex function of attack investments, βi.

Corollary 2. If the detection probability function is given in equation 14, and we have
(C+P )

eai
ed
i(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Li
edi

and
(C+P )

eai
ed
i

C+P
C(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Ui−Li
eai

, and the second stage game is of Infiltra-

tion/Harassment type, then the first stage game has a unique closed form Nash equilibrium given

by:

α∗
i =

(C +P )
eai
edi(

N + C+P
C

∑N

j=1

eaj

edj

)2 −
Li
edi
, ∀i= 1, . . . ,N (15)

β∗
i =

(C +P )
eai
edi

C+P
C(

N + C+P
C

∑N

j=1

eaj

edj

)2 −
Ui−Li
eai

, ∀i= 1, . . . ,N (16)

and

d∗i ≡ di(α∗
i , β

∗
i ) =

edi
edi + eai

C+P
C

, ∀i= 1, . . . ,N. (17)

Proof. The conditions
(C+P )

eai
ed
i(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Li
edi

and
(C+P )

eai
ed
i

C+P
C(

N+C+P
C

∑N
j=1

ea
j

ed
j

)2 ≥ Ui−Li
eai

ensure that the

equilibrium obtained is non-negative. Now, it is easy to check that the provided equilibrium satisfies

the first order conditions, and in fact, it is the only solution that can be derived from the first

order conditions. �

Corollary 3. If the detection probability function is given as in equation 14, the second stage

game is of Infiltration/Harassment type, Li � C, Ui � C and C+P
C

eai
edi
< N , then increasing edi

decreases both α∗
i and β∗

i . On the other hand, increasing eai increases both α∗
i and β∗

i .

Proof. Conditions Li� C, and Ui� C ensure that the solutions in equations 15 and 16 are

valid. Now, from these equations, it is easy to take the first derivative with respect to edi and eai

and verify the following under the given conditions:
∂α∗i
∂edi
≤ 0,

∂β∗i
∂edi
≤ 0,

∂α∗i
∂eai
≥ 0, and

∂β∗i
∂eai
≥ 0. �

Remark 4. Corollary 3 states that if the efficiency factor for the attacker increases, investment

levels for both players increase. On the other hand, if the efficiency factor for the defender increases,

investment levels for both players decrease. This is an interesting result which is also valid for the

budget constrained case (see Corollary 5). If we consider the increase in investment efficiency as
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discovering a new technology, if a hostile agent, the attacker, obtains this new technology, then we

observe a proliferation in security investments. However, if this new technology is obtained by a

non-hostile agent, the defender, it leads to a reduction in security investments.

In the next example, we analyze the Nash Equilibrium for the case with two targets.

Example. We consider an example with two targets where the second stage game is of Infiltra-

tion/Harassment type, i.e., C1 =C2 =C, and the detection probability function is given by equation

14. Furthermore, assume that P = 100,L1 = L2 = 0.9,U1 = U2 = 1, ed1 = ed2 = 1 and ea1 = ea2 = 1.

Using Corollary 2 we can compute the unique Nash Equilibrium for this example. We further ana-

lyze the effect of players’ deviations from the Nash equilibrium in their payoff and best response

strategies. First, we compute the effects of such deviations on players’ total payoff.

The attacker’s total payoff is given as:

uat (α,β) = ua1(β) +ua∗2 (α,β) =−β1−β2−
C +P

1
d1(α1,β1)

+ 1
d2(α2,β2)

+C. (18)

Figure 2a presents the attacker’s total payoff as a function of his investment on target 1 when all

other decision variables are at their equilibrium level. This figure demonstrates that the attacker’s

payoff has a well-known inverse U form, that has been identified by many papers in literature (see

e.g., Hausken (2006), Hausken et al. (2009), Levitin and Hausken (2012a)). Moreover, Figure 2a

shows that the payoff is higher for higher target values and optimal attack investments increase

for higher target values.

The defender’s total payoff is given as:

udt (α,β) = ud1(α) +ud∗2 (α,β) =−α1−α2 +
C

1
d1(α1,β1)

+ 1
d2(α2,β2)

−C. (19)

Figure 2b illustrates the defender’s payoff as a function of her investments on target 1 when all

other decision variables are at their equilibrium level. This function is also concave, as was proved

in Lemma 2. Moreover for higher target values, the optimum investment value is higher. This is in

line with other results in literature, see e.g., Hausken and He (2016).

Attacker’s best response: We now compute the attacker’s best investment level in target 1 as

a function of the defender’s investment in target 1. We use the first order condition to obtain the

best response:

∂uat (α,β)

∂β1

=−1− (C +P )

∂d1(α1,β1)
∂β1

d21(α1,β1)(
1

d1(α1,β1)
+ 1

d2(α2,β2)

)2 = 0, (20)

implying
∂d1(α1,β1)

∂β1

d21(α1,β1)(
1

d1(α1,β1)
+ 1

d2(α2,β2)

)2 =
−1

C +P
, (21)
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to obtain the best response as

β∗
1 =

√
(C +P )ea1(ed1α1 +L1)− (ed1α1 +L1)(

1
d2(α2,β2)

+ 1)− (U1−L1)

ea1
. (22)

Figure 2c depicts the attacker’s best response as a function of the defender’s investments. Clearly,

as defense investments increase, the attacker at first increases attack investments to keep up with

the defender, but after a certain point, the attacker starts decreasing his investments, until he is

completely deterred from investing.

Defender’s best response: We use the first order condition

∂udt (α,β)

∂α1

=−1 +C

∂d1(α1,β1)
∂α1

d21(α1,β1)(
1

d1(α1,β1)
+ 1

d2(α2,β2)

)2 = 0, (23)

implying
∂d1(α1,β1)

∂α1

d21(α1,β1)(
1

d1(α1,β1)
+ 1

d2(α2,β2)

)2 =
1

C
, (24)

to evaluate the defender’s best response function

α∗
1 =

1

ed1

(√
Ced1(e

a
1β1 +U1−L1)− (ea1β1 +U1−L1)

1
d2(α2,β2)

+ 1

)
− L1

ed1
. (25)

Figure 2d shows the defender’s best response as a function of the attacker’s investments. As

attack investments increase, the defender at first increases defense investments to keep up with

the attacker, but after a certain point, the defender starts decreasing her investments, until she

is completely deterred from investing. Note that, because the attacker’s investment levels do not

exceed 20 units (see Figure 2c), in equilibrium, the defender will not be deterred from investing.

Another observation is that, the defender’s optimum investment level is higher for higher target

values. This is in line with other results in literature, see e.g., Hausken and He (2016).

Effect of investment efficiency factors on optimal strategies: We use equations 15 and 16

to compute the Nash equilibrium strategies. Figures 2e and 2f show the effect of the defender’s

investment efficiency factor on the players’ optimal strategies. These figures show that both players’

optimal investment levels are decreasing in the defender’s efficiency factor.

3.2.2. Budget Constrained Model In this section, we investigate the budget constrained

model in which players do not incur investment disutility, instead they both have a budget limit

in the first stage game. Equations 26 and 27 give the player’s total payoff functions.

udt (α,β)≡ ud∗2 (α,β) =

1−
∑k

j=1

1

dj(αj, βj)∑k

j=1

1

dj(αj, βj)Cj

, (26)
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Figure 2 Analysis of the numerical example
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uat (α,β)≡ ua∗2 (α,β) =−
1−

∑k

j=1

Cj

dj(αj, βj)(Cj +P )∑k

j=1

1

dj(αj, βj)(Cj +P )

. (27)

The following lemma proves the quasi-concavity of both payoff functions.

Lemma 4. udt (α,β) and uat (α,β) are quasi-concave in α and β, respectively.

Proof. See Appendix A.5. �

The following theorem establishes the existence and uniqueness of the Nash equilibrium for the

budget constrained invest-defend game.

Theorem 3. The budget constrained game has a unique Nash Equilibrium (α,β).

Proof. See Appendix A.6. �

To compute the unique Nash Equilibrium we use the Karush-Kuhn-Tucker (KKT) (Kuhn and

Tucker 1951) conditions for both the defender and the attacker. The optimization problem for the

defender is given below

max
α

udt (α,β) (28)

k∑
j=1

αj =A, (29)

αj ≥ 0, (30)

KKT conditions for this optimization problem are

∂udt (α,β)

∂αj
= λ−µj, (31)

k∑
j=1

αj =A, (32)

µjαj = 0, (33)

µj ≥ 0, αj ≥ 0. (34)

Remark 5. If site i receives investment αi with 0<αi ≤A, at optimality, we have: ∂udt (α,β)

∂αi
= λ.

This implies that if αi, αj > 0 for i 6= j then: ∂udt (α,β)

∂αi
= ∂udt (α,β)

∂αj
.
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The optimization problem for the attacker is as follows:

max
β

uat (α,β) (35)

k∑
j=1

βj =B, (36)

βj ≥ 0. (37)

KKT conditions for this optimization problem are as follows:

∂uat (α,β)

∂βj
= γ−πj, (38)

k∑
j=1

βj =B, (39)

πjβj = 0, (40)

πj ≥ 0, βj ≥ 0. (41)

Remark 6. If site i receives investment βi with 0<βi ≤B, at optimality we have: ∂uat (α,β)

∂βi
= γ.

This implies that if βi, βj > 0 for i 6= j then: ∂uat (α,β)

∂βi
= ∂uat (α,β)

∂βj
.

Although there is no closed-form equilibrium for the invest-defend game when the second stage

game is of the Maximal Damage type, under certain detection probability functions, a closed-form

equilibrium exists for the Infiltration/Harassment type second stage game.

Corollary 4. For the budget constrained game, if the second stage game is of Infiltra-

tion/Harassment type, and the detection probability function is given by equation 14, then the first

stage game has a unique closed form solution given by:

β∗
i =

eai
edi∑N

j=1

eaj

edj

(
B+

N∑
j=1

(
Uj
eaj
− Lj
eaj

)

)
− (

Ui
eai
− Li
eai

), ∀i= 1, . . . ,N, (42)

α∗
i =

eai
edi∑N

j=1

eaj

edj

(
A+

N∑
j=1

Lj
edj

)
− Li
edi
, ∀i= 1, . . . ,N, (43)

with:

d∗i =
A+

∑N

j=1

Lj

edj

A+
∑N

j=1

Lj

edj
+B+

∑N

j=1(
Uj
eaj
− Lj

eaj
)
, ∀i= 1, . . . ,N, (44)

as long as equations 42 and 43 are non-negative.
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Proof. Based on the assumptions, and using the KKT conditions with πj = µj = 0 for j =

1, . . . ,N , the equations in the corollary are derived. �

Remark 7. In the case that the second stage game is of Infiltration/Harassment type, the

equilibrium investment strategy succeeds in making all detection probabilities the same, hence

causing the Nash equilibrium defend-attack strategies uniformly distributed over the targets. Thus

the equilibrium strategies succeed in achieving the maximum entropy.

Corollary 5. For the budget constrained game, if the detection probability function is given

in equation 14, the second stage game is of Infiltration/Harassment type, i.e., C1 = · · ·=CN =C,

Li,Ui� A,B, then increasing edi will decrease both α∗
i and β∗

i . On the other hand, increasing eai

will increase both α∗
i and β∗

i .

Proof. The condition Li,Ui�A,B ensures that the solution in equations 42 and 43 is always

valid. From these equations, it is easy to take the first derivatives with respect to edi and eai and

verify the following:
∂α∗i
∂edi
≤ 0,

∂β∗i
∂edi
≤ 0,

∂α∗i
∂eai
≥ 0, and

∂β∗i
∂eai
≥ 0. �

Remark 8. Corollary 5 states that if the investment efficiency factor for the attacker increases,

investment levels of both players increase. On the other hand, if the defender’s efficiency factor

increases investment levels of both players decrease. This is the budget constrained equivalent of

Corollary 3.

4. Application to real data

In this section, we apply the budget constrained model to real data from Willis et al. (2005)

presented in Table 1. This table provides estimates of the expected annual terrorism losses in the

10 most valuable urban areas of the United States. It also indicates the grant allocation data to

these areas. We consider two aspects of the expected damage: monetary value (represented by

the expected property loss) and fatality value (represented by the total number of fatalities and

injuries). For each of these two aspects, we use the proposed two-stage approach to allocate defense

resources among the urban areas. We use the total grant allocation (to all 10 urban areas, i.e., 270

million dollars) as the total available budget for the defender and consider different values for the

attacker’s budget. Bier et al. (2008) have also used this data set to study the effect of different

factors on the optimal allocation of resources. Throughout our experiments, we compare our results

with the results obtained by Bier et al. (2008) whenever possible. We assume that the detection

probability function is of the form given in equation 14. Unless stated otherwise, we use the following

values for the game parameters: Li = 0.9,Ui = 1, edi = eai = 1 for i= 1,2, . . . ,N, and B = 0.3A. Also

note that because target valuations are not the same, i.e., C1 = · · ·= CN = C does not hold, the

second stage game in this section is of Maximal Damage type.
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Table 1 Expected damage data for the 10 urban areas with the highest losses

Urban Area
Expected property loss

($million)

Expected Fatalities

& Injuries

FY2004 UASI Grant

Allocation ($ million)

New York (NY) 413 5350 47

Chicago (CH) 115 1212 34

San Francisco (SF) 57 472 26

Washington DC (WDC) 36 681 29

Los Angeles (LA) 34 402 40

Philadelphia (PHL) 21 199 23

Boston (BSTN) 18 225 19

Houston (HSTN) 11 160 20

Newark (NW) 7.3 74 15

Seattle (STL) 6.7 88 17

Total 719 8863 270

4.1. Analysis based on monetary data

This section presents the results of the two-stage game analysis based on the monetary value

of each urban area. Table 2 illustrates the optimal strategies of both players for P = 400 and

different values for the attacker’s budget. It indicates that, for B = 0.3A, the defender distributes

her investments among the first six most important areas and the level of investment decreases as

the value of the area decreases. No investment is allocated to the next important area, i.e., BSTN,

however, note that the second stage strategy complements the first stage investment decision by

covering BSTN with a relatively high probability. With the exception of this, the second stage

defense probabilities also decrease as the value of the area decreases. For the attacker, all of the first

stage investments go to BSTN and most of the second stage effort is concentrated in BSTN. This

is, roughly speaking, in line with the assumptions of other models, including Bier et al. (2008), that

the attacker concentrates his efforts on one area. However the complementary interaction between

the first stage and the second stage decisions has not been observed in previous studies. Another

interesting observation is that as the attacker’s budget increases, decisions at both stages favor

more important areas.

Next, we study the effect of the penalty for a failed attack, P , on the optimal first and second

stage decisions of both players. Figure 3a shows the effect of P on the defender’s optimal invest-

ment decisions. As the attacker’s penalty of a failed attack increases, the defender distributes her

investments to cover more targets. This is due to the fact that as the penalty of a failed attack

increases, the attacker is less willing to risk being caught and more willing to attack more vul-

nerable targets where he is less likely to have an unsuccessful attack. In response, the defender

distributes her investments to cover more targets. Another observation is that the investment dis-

tribution does not change smoothly as P increases. In other words, the line slopes change at some

break points. These break points correspond to a change in the critical index k (in Theorem 1).
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Table 2 Optimal investment and defend/attack strategies for monetary data with P = 400

B = 0.3A B = 0.6A B = 0.9A

α∗
i β∗

i x∗
i y∗i α∗

i β∗
i x∗

i y∗i α∗
i β∗

i x∗
i y∗i

NY 59.82 0.00 0.487 0.000 67.28 0.00 0.483 0.000 97.59 0.00 0.467 0.000

CH 56.01 0.00 0.190 0.002 62.31 0.00 0.184 0.001 85.35 0.00 0.158 0.001

SF 50.16 0.00 0.087 0.003 54.54 0.00 0.080 0.002 64.29 0.00 0.051 0.001

WDC 42.42 0.00 0.043 0.005 43.91 0.00 0.035 0.003 22.78 0.00 0.005 0.002

LA 41.05 0.00 0.038 0.006 41.97 0.00 0.031 0.003 0.00 243.00 0.318 0.995

PHL 20.53 0.00 0.009 0.009 0.00 162.00 0.187 0.990 0.00 0.00 0.000 0.000

BSTN 0.00 81.00 0.145 0.974 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.000

Each time the critical index k increases, a new target area is added into consideration and to

adjust to this change, the line slopes change. Figure 3b illustrates the effect of P on the attacker’s

optimal investment decisions. The attacker’s investments generally concentrate on a single area

that is unprotected (in terms of the defender’s first stage investments) and has the highest value.

Figure 3c shows the defender’s second stage defense probability assignments as a function of P . As

seen in this figure, the defender’s probability assignments are similar to her first stage investment

assignments in the sense that more areas get covered as P increases. Moreover, the complementary

interaction observed in Table 2, is also visible in Figure 3c. For example, at around P = 150, the

investments are distributed between two most important areas, i.e., NY and CH. The next most

important area, SF, receives no investment in the first stage. However, the second stage defense

probability assignment complements the first stage decision by defending SF with a relatively high

probability. Another observation is that the defense probability distribution is not monotonic as P

increases. In other words, they sometimes increase and sometimes decrease. This is due to changes

in the line slopes in Figure 3a. As discussed in this figure, when the critical index k increases,

the defender’s investment levels for the currently covered targets decrease to accommodate the

newly added target area. For some points, these investments reduce with a fairly sharp slope. As

a result, and as was proved in Corollary 1, the corresponding defense probabilities increase. When

the critical index k does not change and investment levels are fairly stable, based on equation 5,

as P increases, the defense probabilities decrease for higher valued targets and increase for lower

valued targets. Figure 3d shows the attacker’s second stage probabilities as a function of P . The

second stage attack probabilities are in line with the first investment decisions. In other words,

the second stage probabilities are concentrated on the same target that received majority of the

investments in the first stage.

4.2. Analysis based on fatality data

This section presents the results of the two-stage game analysis based on the fatality value of each

urban area. We study the effect of the attacker’s budget on both players’ strategies. This budget
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(a) Defender’s optimal investment allocation.

0 100 200 300 400 500 600
0

20

40

60

80

Penalty for a failed attack (P )

In
ve

st
m

en
ts

($
m

il
li
on

)

NY
CH
SF

WDC
LA

PHL
BSTN
HSTN
NW
STL

NY

CH

S
F

W
D
C

L
A

P
H

L

S
T

L

H
S
T

N

N
W

(b) Attacker’s optimal investment allocation.
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(c) Defender’s optimal defense policy.
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(d) Attacker’s optimal attack policy.

Figure 3 Analysis for monetary value data

is represented by a percentage of the defender’s budget. Table 3 provides the optimal strategies

of both players for P = 5000 and different values for the attacker’s budget. It shows that, for

B = 0.3A, the defender distributes her investments among the first six most important areas and

the investment level decreases as the value of the area decreases. No investment is allocated to the

next important area, i.e., PHL, however, similar to the previous analysis, the second stage strategy

complements the first stage investment decision by covering PHL with a relatively high probability.

Ignoring this exception, the second stage defense probabilities are also distributed proportional to

the value of the area. For the attacker, all of the first stage investments go to PHL and most of the

second stage effort is concentrated in PHL. This is, roughly speaking, in line with the assumptions

of other models, including Bier et al. (2008), that the attacker concentrates his efforts on one area.

Moreover, similar to the results of Bier et al. (2008), different valuations of targets lead to different

investment allocations. Similar observations can be made for other values of the attacker’s budget.
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Table 3 Optimal investment and defend/attack strategies for fatality data with P = 5000

B = 0.3A B = 0.6A B = 0.9A

α∗
i β∗

i x∗
i y∗i α∗

i β∗
i x∗

i y∗i α∗
i β∗

i x∗
i y∗i

NY 59.37 0.00 0.499 0.000 75.95 13.48 0.574 0.000 158.23 0.00 0.452 0.000

CH 55.13 0.00 0.165 0.002 64.56 11.55 0.185 0.002 111.77 0.00 0.087 0.002

WDC 50.49 0.00 0.087 0.003 53.09 9.60 0.094 0.003 0.00 243 0.461 0.997

SF 45.34 0.00 0.052 0.005 41.49 7.63 0.053 0.005 0.00 0.00 0.00 0.00

LA 42.15 0.00 0.039 0.005 34.91 6.52 0.039 0.006 0.00 0.00 0.00 0.00

BSTN 17.52 0.00 0.007 0.010 0.00 113.23 0.055 0.984 0.00 0.00 0.00 0.00

PHL 0.00 81.00 0.152 0.975 0.00 0.00 0.000 0.000 0.00 0.00 0.00 0.00

Another interesting observation is that as the attacker’s budget increases, both first stage and

second stage decisions shift towards more important areas.

Next, we study the effect of penalty for a failed attack, P , on the optimal first stage and second

stage decisions. Figure 4a shows the effect of P on the defender’s optimal investment decisions. As

seen in this figure, similar to the case of monetary value analysis, as P increases, the defender dis-

tributes the investments to cover more targets. Moreover, in comparison with the case of monetary

value analysis, the defender covers fewer areas with investments. Figure 4b shows the effect of P on

attacker’s optimal investment decisions. According to this figure, attacker’s investments generally

concentrate on a single unprotected area (in terms of the defender’s first stage investments) with

the highest value. Figure 4c shows the defender’s second stage defense probability assignments as a

function of P . As seen in this figure, similar to her first stage investment assignments, more areas

get covered as P increases. Moreover, the complementary interaction between the first stage and

second stage decisions, as observed in Table 3, is also visible in Figure 4c. This figure also shows

that, in comparison with the case of monetary value analysis, the defender covers fewer areas with a

positive defense probability. Figure 4d shows the attacker’s second stage probabilities as a function

of P . According this figure, the second stage attack probabilities are in line with the first stage

investment decisions. In other words, the second stage probabilities are concentrated on a single

target which is the same target that received majority of the investments in the first stage.

5. Conclusions and future research

In this paper, we introduce two-stage invest-defend games to accommodate both strategic and

operational decisions in the same model to respond to more realistic environments. We then prove

the existence of Nash equilibria for both unconstrained and budget constrained models and estab-

lish its uniqueness for the budget constrained model. We provide closed form solutions for the

invest-defend game with the Infiltration/Harassment type second stage for both models. In the
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(a) Defender’s optimal investment allocation.
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(b) Attacker’s optimal investment allocation.
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(c) Defender’s optimal defense policy.
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(d) Attacker’s optimal attack policy.

Figure 4 Analysis for fatality value data

budget constrained model, the solution of the first stage problem makes all sites indistinguishable

through the appropriate investments for defense and attack, hence enforcing a uniform allocation

of defense/attack efforts at the second stage. Our results indicate that an increase in defense invest-

ments in a target decreases the probability of both defending and attacking that target. However,

an increase in attack investments increases the probability of both defending and attacking that

target. Our results also demonstrate that an increase in the defender’s investment efficiency leads

to decrease in investments by both the defender and the attacker. On the contrary, an increase in

the attacker’s investment efficiency leads to increase in investments by both the defender and the

attacker.

When the budget constrained model is applied to real data, the analysis reveals that the

attacker’s penalty for a failed attack is an important factor in determining the defender’s optimal

distribution of investments and defense probabilities. In addition, the defender’s second stage deci-

sions complement her first stage decisions in the sense that the most important area that receives



Yolmeh and Baykal-Gürsoy: Two-stage invest-defend game: balancing strategic and operational decisions

24 Article submitted to Decision Analysis; manuscript no. (Please, provide the mansucript number!)

little or zero investment is covered with a relatively high defense probability in the second stage.

Moreover, the Nash strategy prescribes shifting the investments more towards the most important

sites as the attacker’s budget increases.

This study extends the current security game models by integrating strategic and operational

level decisions in a comprehensive model. However, there is still a need to further investigate

multi-period invest-defend games with multiple defenders. Another area of interest is the effect of

investment transparency vs secrecy on the defense policy.

Appendix A: Proofs of selected theorems and lemmas

A.1. Theorem 1

Proof. To prove this theorem we first establish some lemmas.

Lemma 5. The second stage matrix game has a pure Nash Equilibrium if and only if (1− d1)C1− d1P ≥

C2.

Proof. Suppose we have (1− d1)C1−d1P ≥C2. It is easy to check that x = (1,0,0, ...,0) , y = (1,0,0, ...,0)

is a pure Nash Equilibrium strategy pair. This establishes the sufficiency part. We prove the necessity part

by contradiction. Suppose that (1− d1)C1−d1P <C2, and the game has a pure Nash Equilibrium. This pure

Nash Equilibrium can not be given by x = (1,0,0, ...,0) , y = (1,0,0, ...,0), because at this strategy profile the

attacker can strictly increase his payoff by attacking site 2. Moreover, the target for both attack and defend

has to be the same, i.e., xi = yi = 1 for some i > 1. However, this implies that (1− di)Ci − diP ≥C1 which

contradicts our assumption of sorted Cis, thus proving the necessity part.

�

Lemma 6 characterizes the conditions under which some strategies of the attacker are dominated by a linear

combination of other strategies. This lemma helps us find a critical index to compute the Nash Equilibrium.

Lemma 6. If
k∑
j=1

Cj−Ck

dj(Cj+P )
> 1, then the attacker’s strategies l≥ k are strictly dominated by a mixed strategy

that is composed of pure strategies j for 1≤ j < k, i.e., there exist λi ≥ 0, 1≤ i≤ k− 1 with
k−1∑
i=1

λi = 1 such

that:

λ1


(1− d1)C1− d1P

C1

C1

...

C1

+λ2


C2

(1− d2)C2− d2P
C2

...

C2

+· · ·+λk−1



Ck−1
...

(1− dk−1)Ck−1− dk−1P
...

Ck−1


>



Cl
...
...

(1− dl)Cl− dlP
...

Cl


.

Proof. The inequality holds for rows r≥ k because Cis are sorted, i.e.,
∑k−1

j=1 λjCj >Ck for all λi ≥ 0, 1≤

i≤ k− 1 with
k−1∑
i=1

λi = 1
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For rows r < k, consider the assumption,
k∑
j=1

Cj−Ck

dj(Cj+P )
> 1. After some algebraic manipulations this inequal-

ity can be rewritten as:

(1− dr)Cr − drP

dr(Cr +P )
k−1∑
m=1

1
dm(Cm+P )

+

k−1∑
j=1,j 6=r

Cj

dj(Cj +P )
k−1∑
m=1

1
dm(Cm+P )

>Ck.

Setting λj = 1

dj(Cj+P )
k−1∑
m=1

1
dm(Cm+P )

gives the result as:

λr (1− dr)Cr +

k−1∑
j=1,j 6=r

λjCj >Ck ≥Cl. �

Lemma 7 complements Lemma 6 in characterizing the sites that should be in the mixed Nash Equilibrium.

Lemma 7. If
k∑
j=1

Cj−Ck

dj(Cj+P )
< 1, any strategy profile with xk = 0 is not a Nash Equilibrium.

Proof. By contradiction. Suppose the Nash Equilibrium holds with xk = 0. If yk = 0, consider a critical

k∗ ≥ k such that
k∗∑
j=1

Cj−C∗k
dj(Cj+P )

< 1<
k∗+1∑
j=1

Cj−Ck∗+1

dj(Cj+P )
. Using Lemma 5, we can conclude that both players are

playing a mixed strategy. Moreover using Lemma 6 we have: xj = 0, yj = 0, ∀j > k∗. Therefore the attacker

is indifferent towards his choices i= 1, ..., k∗, i 6= k, in other words:

(1− d1x1)C1− d1x1P = · · ·= (1− dk−1xk−1)Ck−1− dk−1xk−1P = (1− dk+1xk+1)Ck+1− dk+1xk+1P = . . .

= (1− dk∗xk∗)Ck∗ − dk∗xk∗P.

Solving these equations along with the equation
k∗∑

j=1,j 6=k
xj = 1 yields:

xk∗ =

1−
k∗∑

j=1,j 6=k

Cj−Ck∗
dj(Cj+P )

dk∗(Ck∗ +P )
k∗∑

j=1,j 6=k

1
dj(Cj+P )

.

Since
k∗∑
j=1

Cj−Ck∗
dj(Cj+P )

< 1 and Ck∗ ≤Ck, the following inequality holds:

k∗∑
j=1,j 6=k

Cj −Ck
dj(Cj +P )

< 1,

which could be rewritten as:
k∗∑

j=1,j 6=k

Cj −Ck∗ + (Ck∗ −Ck)
dj(Cj +P )

< 1.

This further simplifies to:

(Ck∗ −Ck)<
1−

k∗∑
j=1,j 6=k

Cj−Ck∗
dj(Cj+P )

k∗∑
j=1,j 6=k

1
dj(Cj+P )

= dk∗(Ck∗ +P )xk∗ ,

giving (1− dk∗xk∗)Ck∗ − dk∗xk∗P <Ck. Therefore the attacker can strictly improve his payoff by increasing

yk to 1. Hence yk = 1 should hold. Now the defender can strictly increase her payoff by increasing xk to 1.

This is in contradiction with our assumption of xk = 0 being in a Nash Equilibrium. �
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We are now aready to prove the theorem. Consider a critical k∗ such that
k∗∑
j=1

Cj−Ck∗
dj(Cj+P )

< 1<
k∗+1∑
j=1

Cj−Ck∗+1

dj(Cj+P )
,

if k∗ = 1 then Lemma 5 and Lemma 6 imply that the game has a unique pure strategy Nash Equilibrium. If

k∗ ≥ 2, then using Lemma 6 and Lemma 7, the mixed strategy Nash Equilibrium is determined by solving

the following systems of equations:

System 1:

(1− d1x1)C1− d1x1P = (1− d2x2)C2− d2x2P = ...= (1− dk∗xk∗)Ck∗ − dk∗xk∗P,
k∗∑
j=1

xj = 1.

System 2:

− (1− d1)C1y1−
k∗∑

j=1,j 6=1

Cjyj =− (1− d2)C2y2−
k∗∑

j=1,j 6=2

Cjyj = ...=− (1− dk∗)Ck∗yk∗ −
k∗∑

j=1,j 6=k∗
Cjyj ,

k∗∑
j=1

yi = 1.

Both systems have unique solutions. Solving these systems lead to the solution in equations 5 to 8. �

A.2. Lemma 1

Proof. Because the first stage payoffs, ud1(α) and ua1(β), are linear in α and β, they are continuous in

α and β. Therefore, in order to prove that the total payoff functions are continuous, we only need to prove

that the second stage payoffs are continuous. We first prove that the second stage payoff function for the

defender is continuous in both players’ strategies. Here is the payoff function:

ud2(α,β) =

1−
∑k

j=1

1

dj(αj , βj)∑k

j=1

1

dj(αj , βj)Cj

.

For a fixed value of k, clearly the payoff function is continuous, therefore we only need to prove that it

is also continuous when the value of k changes. If Ci = C, ∀i = 1, . . . ,N, then k = N always holds and

the result follows. We now focus on the case of P = 0. The value of k changes only when φk(α,β) =∑k−1
j=1

Cj −Ck
dj(αj , βj)(Cj)

= 1 and a small change in either α or β results in φk(α,β)> 1, hence causing the value

of k decreased by one unit. At this point the expected damage is computed using the formula k′ = k− 1 as

the threshold value. We prove that the expected damage under both threshold indices k,or k−1, lead to the

same value:

∣∣ud2(α,β)|k′ −ud2(α,β)|k
∣∣=
∣∣∣∣∣∣∣∣
1−

∑k−1
j=1

1

dj(αj , βj)∑k−1
j=1

1

dj(αj , βj)Cj

−
1−

∑k

j=1

1

dj(αj , βj)∑k

j=1

1

dj(αj , βj)Cj

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

dk(αk, βk)Ck

1−
∑k−1

j=1

Cj −Ck
dj(αj , βj)Cj∑k−1

j=1

1

dj(αj , βj)Cj

∑k

j=1

1

dj(αj , βj)Cj

∣∣∣∣∣∣∣∣= 0.

This establishes continuity of the defender’s payoff. Same argument applies when proving the continuity

of the attacker’s payoff function. �
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A.3. Lemma 2

Proof. We have already established the continuity of both payoff functions. In order to prove concavity

we show that the second derivative is negative. The first derivative of udt (α,β) is given as:

∂udt (α,β)

∂αi
=−1 +


1

d2i (αi, βi)Ci

(
1−

∑k

j=1

Cj −Ci
dj(αj , βj)Cj

)
(∑k

j=1

1

dj(αj , βj)Cj

)2

 ∂di(αi, βi)

∂αi
.

Then the second derivative satisfies:

∂2udt (α,β)

∂α2
i

=

(
2

d3i (αi, βi)Ci

(
1−

k∑
j=1

Cj −Ci
dj(αj , βj)Cj

)) 1

di(αi, βi)Ci
−
∑k

j=1

1

dj(αj , βj)Cj∑k

j=1

1

(dj(αj , βj)Cj)3

∂di(αi, βi)

∂αi

+

1

d2i (αi, βi)Ci

(
1−

∑k

j=1

(Cj −Ci)
(dj(αj , βj)Cj)

)
(
∑k

j=1

1

dj(αj , βj)Cj
)2

∂2di(αi, βi)

∂α2
i

< 0.

The last inequality is valid because by assumptions either P = 0 or Ci =C, ∀i= 1, . . . ,N, holds. Therefore

udt (α,β) is strictly concave in αis. One can similarly show that uat (α,β) is strictly concave in βis. �

A.4. Lemma 3

Proof. To prove the lemma for udt (α,β), we first prove that ud2(α,β) is concave in

(d1(α1, β1), d2(α2, β2), ..., dN(αN , βN)). Here is the Hessian matrix for ud2(α,β):

H =
2C(∑N

j=1

1

dj

)3



(
1

d1
−
∑N

j=1

1

dj

)
d31

1

d21d
2
2

. . .
1

d21d
2
N

1

d22d
2
1

(
1

d2
−
∑N

j=1

1

dj

)
d32

. . .
1

d22d
2
N

...
...

. . .
...

1

d2Nd
2
1

1

d2Nd
2
2

. . .

(
1

dN
−
∑N

j=1

1

dj

)
d3N


.

Let Hl be the submatrix of H obtained by taking the upper left hand corner l× l matrix of H. Furthermore

let |Hl|, be the lth principal minor of H.

We need to show that the principal minors of H alternate in sign, starting with negative, i.e., (−1)l |Hl|> 0

for l = 1,2, . . . ,N − 1 and |H|= 0. Because we are only concerned about the sign of the determinant of H,

we can divide (or multiply) rows and columns of H with positive quantities. Therefore, we divide row i by
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2C

di

(∑N
j=1

1
dj

)3 for i = 1,2, . . . ,N , then we multiply column i by di for i = 1,2, . . . ,N . Here is the resulting

matrix:

H ′ =



1

d1

(
1

d1
−
∑N

j=1

1

dj

)
1

d1d2
. . .

1

d1dN
1

d2d1

1

d2

(
1

d2
−
∑N

j=1

1

dj

)
. . .

1

d2dN
...

...
. . .

...
1

dNd1

1

dNd2
. . .

1

dN

(
1

dN
−
∑N

j=1

1

dj

)


.

H ′ is a symmetric diagonally dominant matrix because the absolute value of each diagonal element is equal to

the sum of the absolute values of all other elements in the same row. Therefore H ′ is a negative semi-definite

matrix. Hence the leading principal minors of H ′ alternate in sign, starting with negative, i.e., (−1)l |H ′l |> 0

for l= 1,2, . . . ,N−1 and |H ′|= 0. Because H ′ is obtained by multiplying rows and columns of H with positive

quantities, H ′ and H have the same determinant sign, this is also true for the signs of their leading principal

minors. Therefore the leading principal minors of H alternate in sign, starting with negative, i.e., (−1)l |Hl|>

0 for l = 1,2, . . . ,N − 1 and |H|= 0. Hence ud2(α,β) is concave in (d1(α1, β1), d2(α2, β2), ..., dN(αN , βN)). It

follows that ud2(α,β) is concave in α, because increasing concave function of a concave function is concave.

It then follows that udt (α,β) is concave in α, because the sum of two concave functions is concave. One can

similarly prove the lemma for uat (α,β). �

A.5. Lemma 4

Proof. To prove this lemma for udt (α,β), we prove that all of its upper level sets are convex. Suppose for

two points α and α′ and some L we have,

udt (α,β) =

1−
∑k

j=1

1

dj(αj , βj)∑k

j=1

1

dj(αj , βj)Cj

≥L, (45)

and

udt (α
′, β) =

1−
∑k

j=1

1

dj(α′j , βj)∑k

j=1

1

dj(α′j , βj)Cj

≥L, (46)

we prove that for all λ with 0≤ λ≤ 1 we have:

udt (λα+ (1−λ)α′,β)≥L.

To prove this, note that equation 45 implies

k∑
j=1

1 +
L

Cj
dj(αj , βj)

≤ 1,

and equation 46 gives

k∑
j=1

1 +
L

Cj
dj(α′j , βj)

≤ 1.
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These two equations provide
k∑
j=1

(1 +
L

Cj
)(

λ

dj(αj , βj)
+

1−λ
dj(α′j , βj)

)≤ 1.

Now udt (λα+ (1−λ)α′,β)≥L follows from the convexity of 1
dj(αj ,βj)

for all j. The proof of quasi-concavity

of ua2(α,β) follows similarly. �

A.6. Theorem 3

Proof. We fix the critical index k and write down the optimization problem for both players. For the

defender, we have the following optimization problem:

max udt (α,β) (47)

k∑
j=1

αj =A, (48)

φk(α,β)≤ 1, (49)

αj ≥ 0, (50)

where φi(α,β) =
∑i

j=1

Cj−Ci

dj(αj ,βj)(Cj+P )
for i ∈ {1, . . . ,N} and φN+1(α,β) =∞. It is easy to see that con-

straints 48 and 50 lead to a convex strategy space for the defender. We show that the strategy space charac-

terized by constraint 49 is also convex and therefore the whole strategy space is convex (because intersection

of convex sets is convex). Consider two points α and α′ with φk(α,β)≤ 1, and φk(α
′, β)≤ 1. We show that

any convex combination of α and α′ also satisfies constraint 49. Note that φk(α,β) is a convex function of α

because it is the sum of convex functions. Hence, φk(λα+ (1−λ)α′,β)≤ λφk(α,β) + (1−λ)φk(α
′, β)≤ 1.

The first inequality follows from the convexity of φk(α,β) and the second inequality is due to the assump-

tions, φk(α,β)≤ 1, and φk(α
′, β)≤ 1. Therefore, the defender’s strategy space is convex. It is easy to check

that the strategy space is also compact.

The optimization problem for the attacker is given as follows

max uat (α,β) (51)

k∑
j=1

βj =B, (52)

φk+1(α,β)≥ 1, (53)

βj ≥ 0. (54)

The strategy space of the attacker is also convex and compact (the proof is similar to the convexity proof

of the defender’s strategy space). Therefore the strategy spaces of both players are convex and compact. In
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Lemma 4 we establish that the payoff functions for both players are quasi-concave with respect to their own

strategy. Moreover, because the critical index k is fixed, the payoff functions are continuous. It also follows

that, because φi(α,β) is increasing in i, for each (α,β) there exists an index k such that (α,β) is feasible.

Therefore, applying Debreu’s existence theorem (see Debreu (1952) ) implies that there exist at least one

Nash Equilibrium.

To establish uniqueness, we use the index theory approach (see Theorem 7 in Cachon and Netessine (2004)).

Because first derivatives are all positive, there is no point with
∂ud

t (α,β)

∂αi
= 0 and

∂ua
t (α,β)

∂βi
= 0 for i= 1,2, ...,N ,

therefore conditions of this theorem are, vacuously, satisfied. Thus, there exists at most one Nash Equilibrium.

�
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