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Abstract

Considered are infinite horizon semi-Markov decision processes (SMDPs) with finite state and
action spaces. Total expected discounted reward and long-run average expected reward optimality
criteria are reviewed. Solution methodology for each criterion is given, constraints and variance
sensitivity are also discussed.

1 Introduction

Semi-Markov decision processes (SMDPs) are used in modeling stochastic control problems arrising
in Markovian dynamic systems where the sojourn time in each state is a general continuous random
variable. They are powerful, natural tools for the optimization of queues [20, 44, 41, 18, 42, 43, 21],
production scheduling [35, 31, 2, 3], reliability/maintenance [22].

For example, in a machine replacement problem with deteriorating performance over time, a decision
maker, after observing the current state of the machine, decides whether to continue its usage, or initiate
a maintenance (preventive or corrective) repair, or replace the machine. There are a reward or cost
structure associated with the states and decisions, and an information pattern available to the decision
maker. This decision depends on a performance measure over the planning horizon which is either finite
or infinite, such as total expected discounted or long-run average expected reward/cost with or without
external constraints, and variance penalized average reward.

SMDPs are based on semi-Markov processes (SMPs) [9] [Semi-Markov Processes], that include re-
newal processes [Definition and Examples of Renewal Processes] and continuous-time Markov chains
(CTMCs) [Definition and Examples of CTMCs] as special cases. In a semi-Markov process similar to
Markov chains (DTMCs) [Definition and Examples of DTMCs], state changes occur according to the
Markov property, i.e., states in the future do not depend on the states in the past given the present.
However, the sojourn time in a state is a continous random variable with distribution depending on that
state and the next state, a Markov chain is a SMP in which the sojourn times are discrete (geometric)
random variables independent of the next state; a continuous-time Markov chain is an SMP with expo-
nentially distributed sojourn times; and a renewal process is an SMP with a single state. Semi-Markov
decision processes, first introduced by Jewell [23] and De Cani [8], are also called as Markov renewal
programs [10, 12, 19, 30, 37].
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This article is organized as follows. The next section introduces basic definitions and notations.
Various performance criteria are presented in Section 3 and their solution methodologies are described
in Sections 4-6.

2 Basic Definitions

We consider time-homogeneous, finite state and finite action SMDPs, and give references for the more
general cases. Let {Xm,m ≥ 0} denote the state process, which takes values in a finite state space
S . We also use {Xm,m ∈ N} to denote the state process with N representing the set of nonnegative
integers. At each epoch m the decision maker chooses an action Am from a finite action space A . The
sojourn time between the (m− 1)-st and the (m)-th epochs is a random variable and denoted by Υm.
The underlying sample-space Ω = {S × A × (0,∞)}∞ consists of all possible realizations of states,
actions and the transition times. Throughout, the sample space will be equipped with the �-algebra
generated by the random variables {Xm, Am,Υm+1; m ≥ 0}. The initial state is assumed to be fixed
and given. Note that we will suppress the dependence on the initial state unless given otherwise. Denote
Pxay, x ∈ S , a ∈ A , y ∈ S , for the law of motion of the process, i.e., for all policies u and all epochs
m

Pu{Xm+1 = y∣X0, A0,Υ1, . . . , Xm = x,Am = a} = Pxay.

Also conditioned on the event that the next state is y, Υm+1 has the distribution function Fxay(.), i.e.,

Pu{Υm+1 ≤ t∣X0, A0,Υ1, . . . , Xm = x,Am = a,Xm+1 = y} = Fxay(t).

Assume that Fxay(0) < 1.
The process {St, Bt : t ≥ 0} where St is the state of the process at time t, and Bt is the action taken

at time t, is referred to as the Semi-Markov Decision Process. Let Tn =
∑n
m=1 Υm, i.e., denote the time

of n-th transition. For t ∈ [Tm, Tm+1), clearly

St = Xm, Bt = Am.

2.1 Policy Types

A decision rule um at epoch m is a vector consisting of probabilities assigned to each available action.
A decision rule may depend on all of the previous states, actions, transition times and the present state.
Let uma denote the a-th component of um. Thus, it is the conditional probability of choosing action a
at the m-th epoch, i.e.,

Pu{Am = a∣X0 = x0, A0 = a0,Υ1 = �1, . . . , Xm = x} = uma (x0, a0, �1, . . . , x).

A policy is an infinite sequence of decision rules u = {u0,u1,u2, . . .}.
Policy u is called Markov policy if um at epoch m depends only on the current state not the past

history, i.e.,
um(x) = uma (x0, a0, �1, . . . , x).

A policy is called stationary if the decision rule at each epoch is the same and it depends only on the
present state of the process, u = {u,u,u, . . .}; denote fxa for the probability of choosing action a when
in state x. A stationary policy is said to be pure if for each x ∈ S there is only one action a ∈ A such
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that fxa = 1. Let U , M , F and G denote the set of all policies, Markov policies, stationary policies and
pure policies, respectively. Clearly, G ⊂ F ⊂M ⊂ U.

Under a stationary policy f the state process {St : t ≥ 0} is a semi-Markov process, while the
process {Xm : m ∈ N} is the embedded Markov chain with transition probabilities

Pxy(f) =
∑
a∈A

Pxayfxa.

Clearly, the process {St, Bt : t ≥ 0} is also a semi-Markov process under a stationary policy f with the
embedded Markov chain {Xm, Am : m ∈ N}.

2.2 Chain Structure

Under a stationary policy f , state x is recurrent if and only if x is recurrent in the embedded Markov
chain; similarly, x is transient if and only if x is transient for the embedded Markov chain. A semi-
Markov decision process is said to be unichain(multi-chain) if the embedded Markov chain for each pure
policy is unichain (multi-chain), i.e., if the transition matrix P (g) has at most one (more than one)
recurrent class plus (a perhaps empty) set of transient states for all pure policies g. It is called irreducible
if P (g) is irreducible under all pure policies g. Similarly, an SMDP is said to be communicating if P (f)
is irreducible for all stationary policies that satisfy fxa > 0, for all x ∈ S , a ∈ A .

Let �(x, a) define the expected sojourn time given that the state is x and the action a is chosen just
before a transition, i.e.,

�(x, a)
△
= Eu[Υm∣Xm−1 = x,Am−1 = a]

=

∫ ∞
0

∑
y∈S

Pu{Xm = y,Υm > t∣Xm−1 = x,Am−1 = a}dt

=

∫ ∞
0

[1−
∑
y∈S

PxayFxay(t)]dt.

Let Wt(x, a) denote the random variables representing the state-action intensities,

Wt(x, a)
△
=

1

t

∫ t

0
1{(Ss, Bs) = (x, a)} ds,

where 1{.} denotes the indicator function. Let U0 denote the class of all policies u such that {Wt(x, a); t ≥
0} converges. Thus, for u ∈ U0, there exist random variables {W (x, a)} such that

lim
t→∞

Wt(x, a) = W (x, a).

Let U1 be the class of all policies u such that the expected state-action intensities {Eu[Wt(x, a)]; t ≥ 0}
converge for all x and a. For u ∈ U1 denote

wu(x, a) = lim
t→∞

Eu[Wt(x, a)].

From Lebesgue’s Dominated Convergence Theorem U0 ⊂ U1.
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A well-known result from renewal theory (see Çınlar [9]) is that if {Yt = (St, Bt) : t ≥ 0} is a
homogeneous semi-Markov process, and if the embedded Markov chain {Xm,m ∈ N} is unichain then,
the proportion of time spent in state y, i.e.,

lim
t→∞

1

t

∫ t

0
1{Ys = y} ds,

exists. Since under a stationary policy f the process {Yt = (St, Bt) : t ≥ 0} is a homogeneous semi-
Markov process, if the embedded Markov decision process is unichain then the limit of Wt(x, a) as t
goes to infinity exists and the proportion of time spent in state x when action a is applied is given as

W (x, a) = lim
t→∞

Wt(x, a) =
�(x, a)Z(x, a)∑
x,a �(x, a)Z(x, a),

where Z(x, a) denotes the associated state action frequencies. Let {zf (x, a);x ∈ S , a ∈ A } denote the
expected state-action frequencies, i.e.,

zf (x, a) = lim
n→∞

Ef
1

n

n∑
m=1

1{Xm−1 = x,Am−1 = a} = �x(f)fxa

where �x(f) is the steady-state distribution of the embedded Markov chain P (f).
The long-run average number of transitions into state x when action a is applied per unit time is,

vf (x, a) =
�x(f)fxa∑

x,a �(x, a)�x(f)fxa
=

zf (x, a)∑
x,a �(x, a)zf (x, a)

. (1)

This gives wf (x, a) = �(x, a)vf (x, a).

2.3 Reward Structure

Let Rt be the reward function at time t. Rt can be an impulse function corresponding to the reward
earned immediately at a transition epoch and/or it can be a step function between transition epochs
corresponding to the rate of reward as described below. The decision maker earns an immediate reward
R(Xm, Am) and a reward with rate r(Xm, Am) until the (m+ 1)-th epoch, i.e.,

Rt =

⎧⎨⎩
R(Xm, Am), if t = Tm,

r(Xm, Am), if t ∈ [Tm, Tm+1).
(2)

Thus,
Rm+1 = R(Xm, Am) + r(Xm, Am)Υm+1,

is the reward earned during the (m+ 1)-th transition [6, 40, 45].
Similarly, there is an immediate cost C(Xm, Am) and a cost with rate c(Xm, Am) with

Cm+1 = C(Xm, Am) + c(Xm, Am)Υm+1.

Hence, at any epoch if the process is in state x ∈ S and action a ∈ A is chosen, then the reward

earned during this epoch is represented by r̄(x, a)
△
=R(x, a) + r(x, a)�(x, a). Similarly, the cost during

this epoch is represented by c̄(x, a)
△
=C(x, a) + c(x, a)�(x, a).
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Example: Consider the machine replacement problem mentioned in the Introduction with states
(1) machine is in good condition, (2) machine has some minor problems, (3) machine is down and needs
to be replaced. Time to failure of the machine follows a Weibull distribution with scale parameter equal
to 8,000 hours and shape parameter equal to 4. The failure is minor with probability .95 and major
requiring replacement of the machine with probability 0.05. Life time of a machine with minor problems
follows a Weibull distribution with scale parameter equal to 20,000 hours and shape parameter equal
to 4. However, a machine with minor problems could be maintenance repaired to it as good as new.
Maintenance repair takes Weibull distributed amount of time with scale parameter equal to 8 hours and
shape parameter equal to 0.5. On the other hand, the machine replacement time is normally distributed
with mean 72 hours and variance of 8 hours. Running a fully working machine earns $100/ℎr, and a
machine with minor problem earns $75/ℎr profit. It costs $40/ℎr to repair and $10, 000 to replace a
machine. Note that there is no control action available in states 1 and 3. In state 1 the decision maker
needs to “wait” and in state 3 s/he needs to order a new machine. Let us denote these action as action
1. In state 2, there are two possible actions to choose: “wait” action denoted as action 1, and “initiate
repair” denoted as action 2. Parameters of this model are:

P113 = 0.95, P113 = 0.05, P213 = 1, P221 = 1, P311 = 1,

�(1, 1) = 7, 252, �(2, 1) = 1, 813, �(2, 2) = 48, �(3, 1) = 72,

r̄(1, 1) = 725, 200, r̄(2, 1) = 135, 975, r̄(2, 2) = −1, 920, r̄(3, 1) = −10, 000.

The last two reward values correspond to the incurred costs under repair and replacement, respectively.

3 Performance Measures

We will focus on the optimality criteria over the infinite horizon, since some general results could
be obtained for these models. We will first consider finding a policy u that will maximize the total
discounted reward defined as

��(u)
△
=Eu[

∫ ∞
0

e−�sRs ds]. (3)

where � represents the discount factor[23, 39, 17, 26, 28]. Discounted reward optimality criterion is
easier to analyze and understand than the average reward criterion, since the results for these models
hold regardless of the chain structure of the embedded Markov chain. In fact, the existence of this
integral is immediate under finite rewards. In addition, discounting lands itself naturally to economic
problems in which the present value of future earnings is discounted as a function of the interest rate.
Another interpretation of these models implies the importance of the initial decisions.

The great majority of the literature, on the other hand, is concerned with the long-run average
expected reward criterion with

�1(u)
△
= lim inf

t→∞

1

t
Eu[

∫ t

0
Rs ds], (4)

�1 denoting the long-run average expected reward [23, 19, 11, 12, 27, 38, 45]. The following alternative
to �1 is given by Jewell [24], Ross [34, 33], and Mine and Osaki [30] as

�2(u)
△
= lim inf

n→∞
Eu[

∑n
m=1Rm]

Eu[Tn]
, (5)
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referred to as the ratio-average reward [16]. The performance measure �2 is also used by other researchers
(see e.g., [7, 15, 13, 14, 23, 21, 32]).

Let
�∗� = sup

u∈U
��(u), �∗1 = sup

u∈U
�1(u), �∗2 = sup

u∈U
�2(u).

A policy u is optimal for ��(⋅) if ��(u) = �∗�. For a fixed � > 0, a policy u is �-optimal for ��(⋅) if
��(u) > �∗� − �. Optimality and �-optimal for �1(⋅), �2(⋅) and the other performance measures we will
consider in this article are defined analogously.

The following expected time-average reward criterion has been considered recently by Baykal-Gürsoy
and Gürsoy [1, 4]( also see [5])

 (u)
△
=Eu[lim inf

t→∞

1

t

∫ t

0
Rs ds] (6)

subject to the sample path constraint,

Pu{lim sup
t→∞

1

t

∫ t

0
Cs ds ≤ } = 1. (7)

This constraint requires that the long-run average costs on almost all sample paths should be bounded
by .

More generally, they investigate the following expected time-average variability

�(u)
△
=Eu[lim inf

t→∞

1

t

∫ t

0
ℎ(Rs,

1

t

∫ t

0
Rq dq) ds], (8)

where ℎ(., .) is a continuous function of the current reward at time s and the average reward over an
interval that includes time s. By letting �∗ = supu∈U �(u), the optimality and �-optimality for �(.) are
analogously defined.

4 Discounted Reward Criterion

Discounted reward can be rewritten as:

��(u) = Eu[
∞∑
m=0

e−�Tm(R(Xm, Am) +
r(Xm, Am)

�
(1− e−�Υm))]

=
∞∑
m=0

∑
x,a

∫ ∞
0

e−�t[R(x, a) +
r(x, a)

�
(1−

∑
y

Pxay

∫ ∞
0

e−��dFxay(�))]Pu{Xm = x,Am = a, Tm ≤ t}.

The terms inside the second integral could be recognized as the Laplace transform of the density function
fxay(⋅) and will be denoted as f̃xay(�).

The optimal discounted reward vector is represented by �∗x� for each initial state x, and it can be
shown that it satisfies the optimality equation for all x ∈ S :

�x� = max
a
{[R(x, a) +

r(x, a)

�
(1−

∑
j

Pxaj f̃xaj)] +
∑
y

Pxayf̃xay(�)�y�}

= max
a
{r�(x, a) +

∑
y

P�xay�
y
�}. (9)
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Second equality is obtained from the first by denoting the terms inside the square bracket as r�(x, a)
and writing Pxayf̃xay(�) as P�xay. Note that the second equality is similar to the one obtained for
the Markov Decision Processes(MDPs) [The Total Expected Discounted Reward MDPs: Existence
of Optimal Policies]. Thus, discounted SMDPs can be reduced to discounted MDPs by using these
transformations. Since P�xay < 1, the right hand side of the optimality Equation (9) is a contraction
mapping and the next theorem is immediate.

Theorem 1 For SMDPs under the discounted reward criterion:

(i) There exists a unique solution to the optimality equation 9 and it is equal to �∗�.

(ii) There exists an optimal pure policy g∗ given by, ��(g∗) = �∗� = (I − P�xay)−1r�(g∗) where r�(g∗)
denotes the single-period discounted reward earned under policy g∗.

This optimal pure policy could be obtained using the policy iteration [The Total Expected Dis-
counted Reward MDPs: Policy Iteration], value iteration [The Total Expected Discounted Reward
MDPs: Value Iteration] or linear programming algorithms [21, 42, 43, 32] [Linear Programming For-
mulations of MDPs]. The linear programming(LP) algorithm is discussed next. Consider the following
LP with given numbers �x > 0 for x ∈ S .

max
∑

x∈S ,a∈A
r�(x, a)z(x, a)

s.t.
∑

x∈S ,a∈A
(�xy − P�xay)z(x, a) = �y, y ∈ S

z(x, a) ≥ 0, x ∈ S , a ∈ A .

Let z∗ be an optimum solution of the above LP. Clearly, any extreme point of this LP has ∣S ∣ number
of basic variables where ∣ ⋅ ∣ denotes the number of elements in a given set. Thus, z∗(x, a) is positive
only for one action a. The optimum pure policy g∗ is then obtained by assigning g∗x in such a way that
z∗(x, g∗x) > 0. Constraints defined in a similar fashion,

Eu[

∫ ∞
0

e−�sCs ds] < ,

could be included into the LP as ∑
x∈S ,a∈A

c�(x, a)z(x, a) < ,

with c�(x, a) = C(x, a)+ c(x,a)
� (1−

∑
y Pxayf̃xay). Since every new constraint will increase the number of

basic variables, the optimum policy will no longer be pure but randomized stationary [17] [Constrained
MDPs].

For the countable state case we need the assumption,

Assumption 1 There exists � > 0 and " > 0, such that

Fxay(�) ≤ 1− " for all x and y ∈ S and a ∈ A ,

together with ∣r�(x, a)∣ ≤ M < ∞ to ensure the existence of an optimal pure policy. Additional
conditions are required for SMDPs with Borel state and action spaces, and unbounded rewards [32, 17,
40].
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5 Average Reward Criterion

Average or ratio-average expected reward criterion is applied to systems in which the system dynamics
is not slow enough to warrant discounting. This criterion is more difficult to analyze since the existence
of the optimal stationary policy depends on the chain structure. Under the condition that the SMDP
is irreducible, �1(f) = �2(f) for every stationary policy f [34, 30]. However, this may not hold
even for unichain SMDPs [16]. While �1 is clearly the more appealing criterion, it is easier to write
the optimality equations when establishing the existence of an optimal pure policy under criterion
�2 [38, 45, 36]. On the other hand, for finite state and finite action SMDPs there exists an optimal
pure policy under �1 [12, 38, 36], while such an optimal policy may not exists under �2 in a general
multichain SMDP [25]. Jianyong and Xiaobo [25] investigate average reward SMDPs focusing on �2

and using a data-transformation method [37]. They show that the optimal pure policy exists in some
special cases such as the unichain case and the weakly communicating case.

The optimal pure policy for the average expected reward criterion in multi-chain SMDPs is obtained
from the optimal solution of the following LP [26] under the assumption on the sojourn times.

max
∑

x∈S ,a∈A
r̄(x, a)v(x, a)

s.t.
∑

x∈S ,a∈A
(�xy − Pxay)v(x, a) = 0, y ∈ S

∑
a∈A

�(y, a)v(y, a) +
∑

x∈S ,a∈A
(�xy − Pxay)t(x, a) = �y, y ∈ S

v(x, a) ≥ 0, t(x, a) ≥ 0 x ∈ S , a ∈ A

where �x > 0 for x ∈ S and
∑
y �y = 1. The optimum average expected reward for each initial state is

obtained from the dual of this LP.
In the unichain case, the average reward remains constant regarless of the initial state, and the LP

reduces to,

�∗1 = max
∑

x∈S ,a∈A
r̄(x, a)v(x, a)

s.t.
∑

x∈S ,a∈A
(�xy − Pxay)v(x, a) = 0, y ∈ S

∑
x∈S ,a∈A

�(y, a)v(y, a) = 1

v(x, a) ≥ 0, x ∈ S , a ∈ A ,

with the optimum solution denoted as v∗. The optimum pure policy g∗ is then obtained by assigning
g∗x in such a way that v∗(x, g∗x) > 0. The optimality equations are given for each state x by,

�x = max
a
{r̄(x, a)− g�(x, a) +

∑
y

Pxay�y}.

The solution to these equations, {�∗, g∗} provides the optimum average expected reward, �∗1 = g∗.
The constrained problem has been investigated for the average reward SMDPs [6, 7, 16]. Beutler

and Ross [6, 7] consider the ratio-average reward with a constraint under a condition stronger than
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the unichain condition. In [16], Feinberg examines the problem of maximizing both �1 and �2 subject
to a number of constraints. Under the condition that the initial distribution is fixed, he shows that
for both criteria, there exist optimal mixed stationary policies when an associated linear program (LP)
is feasible. The mixed policies are defined as policies with an initial one-step randomization applied
to a set of pure policies, hence they are not stationary. He provides a linear programming algorithm
for the unichain SMDP under both criteria. Average expected reward SMDPs with Borel state and
action spaces and unbounded rewards are considered by Schäl [36], Sennott [40], and Luque-Vásquez
and Hernández-Lerma [29].

6 Expected Time-Average Reward and Variability

The expected time-average reward criterion is similar to the average expected reward criterion. Fatou’s
lemma immediately implies that  (u) ≤ �1(u) holds for all policies. Baykal-Gürsoy and Gürsoy [4] show
that for a large class of policies these two rewards are equal and an �-optimal randomized stationary
policy can be obtained for the general (communicating, multichain) SMDP, while such a policy may
not exist for the average reward problem [4]. Multiple constraints and the more general expected time-
average variability criterion are also discussed. They show that an �-optimal stationary policy can be
obtained for the general SMDPs. If ℎ(x, y) = x−�(x−y)2, then the optimal policy is a pure policy. Note
that in this case maximizing �(u) corresponds to maximizing the expected average reward penalized by
the expected average variability. A decomposition algorithm to locate the �-optimal stationary policy
for both problems is given in [4]. This algorithm utilizes an LP of the form:

max
∑

x∈S ,a∈A
ℎ[r̄(x, a),

∑
y∈S ,b∈A

r̄(y, b)v(y, b)]v(x, a)

s.t.
∑

x∈S ,a∈A
(�xy − Pxay)v(x, a) = 0, y ∈ S

∑
x∈S ,a∈A

�(x, a)v(x, a) = 1

∑
x∈S ,a∈A

c̄(x, a)v(x, a) ≤ 

v(x, a) ≥ 0, x ∈ S , a ∈ A .
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