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Most infrastructure security games assume that the parameters of the game are either deterministic or
follow a known distribution. Whereas in reality some parameters of the game may be uncertain with
no known distribution or distributional information about them may be unreliable. In this paper we
develop distribution-free models of the incomplete-information infrastructure security game with and
without private information. We assume that the players are uncertain about the node values and detec-
tion probabilities and they use a robust optimization approach to contend with such uncertainty.
Moreover, the aim of the attack, to inflict maximum damage or to infiltrate, may be private to the adver-
sary. Depending on the objective of the adversary and the existence of private information, we present
three models for this game. We then prove the existence and uniqueness of the Nash equilibrium for
the first two models and characterize the shape of the Nash equilibrium for the third model. Our results
show that the equilibrium strategy for the robust game with private information is of threshold type.
Finally, we apply the proposed approach to real data in order to determine the best allocation of defense
resources.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Terrorist attacks are a serious concern for national economy and
quality of life. Every year thousands of people lose their lives or get
injured or kidnapped due to these attacks. In 2015, a total of 11,774
terrorist attacks occurred worldwide, resulting in more than
28,300 deaths and more than 35,300 injuries. In addition, more
than 12,100 people were kidnapped or taken hostage (Bureau of
Counterterrorism, 2016). The psychological impact of the contin-
ued threat of terrorism is also considerable. Such incidents create
fear, panic, anxiety and distress in the society.

Countering terrorism is currently at the top of the national
security agenda in the United States and in many other countries
around the world. Indeed, terrorism is widely regarded to be the
greatest security challenge of our time. These reasons along with
many high profile terrorist attacks that has happened during the
past decade, has highlighted modeling and analyzing security of
such infrastructures as a major research agenda. The consequences
of attacks could be substantially reduced by evaluating the risk
associated with each site within the infrastructure, mitigation
planning, and designing protection strategies and response poli-
cies. To this end, infrastructure security has been a subject of
increased interest from researchers recently. Different approaches
have been proposed to model strategic interactions in security
problems, these methods include system analysis (Paté-Cornell &
Guikema, 2002), mathematical modeling (Harris, 2004), probabilis-
tic risk analysis (Garcia, 2005; Garrick et al., 2004; Kaplan &
Garrick, 1981; McGill, Ayyub, & Kaminskiy, 2007; Paté-Cornell &
Guikema, 2002; Paté-Cornell, 2002) and adversarial risk analysis
(Insua, Rios, & Banks, 2009). However, since terrorists can be
strategic in their attacks, game theoretic analysis of such attacks
yields more realistic results. Recent studies concentrated on devel-
oping game theoretic models to capture terrorism risk and apply-
ing the results in enhancing security measures. One such model,
ARMOR (Paruchuri et al., 2008; Paruchuri, Pearce, Tambe,
Ordóñez, & Kraus, 2007; Paruchuri, Tambe, Ordóñez, & Kraus,
2006; Pita et al., 2008) has been deployed at the Los Angeles Inter-
national Airport (LAX) to enhance security of the airport.

Baykal-Gürsoy, Duan, Poor, and Garnaev (2014) present game
theoretic models of the interaction between an adversary and a
defender in order to study the security problem within a transit
infrastructure. They introduce a risk measure based on the conse-
quence of an attack in terms of the number of people affected or
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the occupancy level of the critical infrastructure. In the proposed
non-cooperative game setting, the objective of the adversary is to
inflict the maximum damage to the infrastructure by attacking a
set of sites in the infrastructure, while the defender attempts to
minimize the expected damage by allocating defensive resources
to the sites within the infrastructure. They analyze both static
and dynamic games and provide a closed form solution for the
unique equilibrium strategy pair and game value in the static case.
Garnaev, Baykal-Gürsoy, and Poor (2014) examine the adversary’s
purpose in attacking the infrastructure. There are two types of
attackers in this model: maximum damage attacker and infiltrating
attacker. Maximum damage attacker aims at inflicting the highest
damage, however the infiltrating attacker seeks just to have a suc-
cessful attack regardless of the damage amount. In order to study
such a game, they suggest a simple Bayesian game-theoretic model
in which the defender does not knowwhat the adversary is seeking
in this attack, e.g., to inflict the maximal damage to the network or
to infiltrate. They supply explicit solutions for the equilibrium
strategies of this game. Such games in which both players take
their action simultaneously are called Nash games. On the other
hand, in Stackelberg games, one of the players acts as the leader
and reveals her decision to the other player, while the other player,
after observing the decision of the leader, takes his action as the
follower. ARMOR model casts the patrolling/monitoring problem
as a Bayesian Stackelberg game. This model helps the security
agent to randomize her actions appropriately, even when the
adversary’s type is not known (Paruchuri et al., 2008; Paruchuri
et al., 2007; Paruchuri et al., 2006; Pita et al., 2008). Garnaev,
Baykal-Gürsoy, and Poor (2016) study a situation, in which the
defender has to make decisions without knowing if the adversary
will play a Nash game or a Stackelberg game. Konak, Kulturel-
Konak, and Snyder (2015) consider the reliable server assignment
problem under attacks. In this model there are two players, a
designer and an adversary. At first the designer determines the
locations of the servers on a graph, then, after observing the strat-
egy of the designer, the attacker selects edges to attack to inflict
maximum damage to the reliability of the system. They model this
problem as a bi-level optimization problem, with the network
designer acting as the leader and the adversary acting as the fol-
lower. They develop a game-theoretic genetic algorithm with
two populations to solve this problem. Garnaev, Baykal-Gürsoy,
and Poor (2015) analyze a game that the attacker can also choose
his attack type.

Majority of these papers assume that the parameters of the
game (such as occupancy levels, detection probabilities etc.) are
known with certainty, however this is not a realistic assumption
because in reality we can only estimate some of these parameters
based on historical data or expert judgments, which both can be
inaccurate. Although occupancy levels may be available to the
defender through infrared or vision sensors, the attacker may only
gather historical data. One possible approach to incorporate
parameter uncertainty within a game is the Bayesian game model
(Harsanyi, 1967, 1968a, 1968b) that uses distributional informa-
tion about the game parameters. However, such distributional
information may not be readily available to the players, or they
may opt not to use potentially inaccurate distributional informa-
tion. Moreover, the equilibrium strategy of the defender may be
seriously affected by such pre-specified probability distributions.
Consequently, some researchers consider robustness to address
parameter uncertainty in game theoretic models. For example,
Aghassi and Bertsimas (2006) relax the assumptions of Harsanyi’s
Bayesian game model and present an alternative distribution-free
equilibrium concept, robust-optimization equilibrium, for games
with payoff uncertainty. In this approach, players try to optimize
their worst case payoff functions simultaneously. The authors
prove the existence of such equilibrium points for arbitrary robust
finite games with bounded polyhedral payoff uncertainty sets. In
the context of security applications, Nikoofal and Zhuang (2012)
develop a game theoretic model in which the defender uses a
robust approach to tackle her uncertainty about the attacker’s val-
uation of the targets. In this model they suggest a Stackelberg game
model in which the defender acts as the leader and the attacker is
the follower. This means that the attacker can observe the defen-
der’s decision and acts accordingly, which might not always be
the case. In some cases the defender may opt not to reveal her deci-
sion, in such cases, simultaneous move games are more appropri-
ate than Stackelberg games. Nikoofal and Zhuang (2015) study
significance of the first mover’s advantage and robustness of
strategies under secrecy in the presence of private information.
Shan and Zhuang (2013) investigate the robustness of the pro-
posed game theoretic model under the presence of strategic and
non-strategic attackers. One difference between their model and
ours is that in their model one of the attackers is completely
non-strategic, however in our model, attackers are both strategic
having different objectives. Moreover, robustness in their paper
refers to the sensitivity of the equilibrium to the defender’s mis-
taken assumption about the attacker’s type. However, in our paper,
robustness is introduced with respect to the parameter uncer-
tainty. Kiekintveld, Islam, and Kreinovich (2013) present Stackel-
berg type security games and apply a robust optimization
approach to optimize the worst case payoff for the defender. How-
ever, they do not address the attacker’s private information in their
model. Kardes� (2014) proposes a robust optimization model for n-
person stochastic games with finite states and actions, and uncer-
tain payoffs. He develops an explicit mathematical programming
formulation to compute the equilibrium strategies for the case of
polytopic uncertainty sets. As an example, he applies this model
to solve an incomplete information version of the traveling inspec-
tor model. The private information about player types is not
included in the model. However, in reality, players may have pri-
vate information, such as their personal preferences or their atti-
tude toward risk, that is not shared with other players. Qian,
Haskell, and Tambe (2015) study a Stackelberg game in which
the adversary is risk averse, however, the defender is uncertain
about the degree of the attacker’s risk aversion and uses a robust
approach to contend with this uncertainty. In this model the adver-
sary has complete knowledge about the defender’s payoff, however
in our model both players are uncertain about the game parame-
ters. Xu and Zhuang (2016) introduce a model in which the defen-
der has private information about her own vulnerability. The
adversary can invest in learning activities to gain intelligence
about the defender’s private information, while the defender deci-
des on investment in counter-learning efforts. This paper is differ-
ent from our study in the sense that in their paper, the defender
has private information. While in our model, the adversary has pri-
vate information. Moreover, they do not address parameter uncer-
tainty in their model.

In this paper, we develop a robust model for the infrastructure
security games, both with and without private information, in
which the players use a robust optimization approach to cope with
payoff uncertainty. We present analytical results about the
existence and uniqueness of robust equilibrium for this game.
We then apply the proposed approach to real data on annual
terrorism losses in the 10 most valuable urban areas of the United
States. The results of the proposed model can be implemented to
determine the optimal defensive resource allocation among these
areas. The rest of the paper is organized as follows. In Section 2
the problem under consideration is described, three models are
proposed to capture the security game under uncertainty. In
Section 3 the proposed approach is applied to real data. Main
conclusions of the paper and future research suggestions are
addressed in Section 4.
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2. Problem description

This section introduces a one-shot infrastructure security game.
There are N sites in the infrastructure that are potential targets.
There is a single defender and a single adversary, therefore each
player can choose only one site in the one shot game. The adver-
sary and the defender simultaneously choose their strategies over
the potential sites. Payoff matrices for both the defender and the

adversary are based on the occupancy level, ~Ci, of each site i in

the infrastructure. ~Ci is an uncertain parameter that has a compact

and convex support Ci;Ci

h i
, and this range is known to both play-

ers. If the defender defends site i and the adversary attacks site
j; j– i, a successful attack on site jwill be launched. Therefore pay-
off to the defender is � ~Cj and the adversary receives a payoff of ~Cj.
However if both players choose the same site i, the attack will be

detected with probability ~di, which is also uncertain and
~di 2 di; di

h i
. Hence the defender’s payoff becomes � 1� ~dj

� �eCj

and the adversary’s becomes 1� ~dj

� �eCj. This means that even

when both rivals are at the same site, there is a probability that
the defender may not detect the adversary. There are no assump-
tions about distributions of the uncertain parameters over their
respective uncertainty intervals.

While the defender always attempts to minimize her expected
damage, the objective of the adversary may vary depending on his
type. There are two possible types of the adversary: maximum
damage (MD) adversary and infiltration/harassment (INF) adver-
sary. The MD adversary seeks to maximize his expected payoff,
thus differentiates between the potential sites based on their occu-
pancy levels. However, this is not the case for an INF adversary, for
whom all sites are the same and the aim is to increase the proba-
bility of having a successful attack. In this paper, three models are
investigated. In the first model the defender plays the security
game with a MD adversary and knows the type of the adversary,
in the second model the defender plays the security game against
an INF adversary type, in the third model the defender is uncertain
about the type of the adversary and only knows that with probabil-
ity q, the adversary is a MD adversary and with probability 1� q
the adversary is an INF adversary. Throughout the paper we
assume that the sites are sorted in the order of decreasing Cis
and Cis are distinct, i.e., C1 > C2 > . . . > CN . The first assumption
is not restrictive by any means, it only requires rearrangement of
site indexes so that the sites are sorted. As for the second assump-
tion, our results will still hold even when Cis are not distinct, how-
ever we are making this assumption in order to simplify the
resulting formulas. In the following subsections we describe and
analyze each model.
2.1. Model 1: Maximum damage game

In this model the adversary wants to inflict the maximum dam-
age. We assume that the defender knows the intention of the
adversary i.e. there is no private information. In this case the payoff
to the adversary is:

u1
A x; yð Þ ¼

XN
i¼1

1� ~dixi
� �eCiyi;

where xi and yi are the probability of choosing site i, by the defender
and adversary, respectively. Therefore x ¼ x1; x2; . . . ; xN½ � and
y ¼ y1; y2; . . . ; yN½ � are the defender’s and the adversary’s mixed
strategies, respectively, and yi � 0; xi P 0; 8i ¼ 1;2; . . . ; N;P

ixi ¼
P

i yi ¼ 1. In order to contend with the uncertainty of
the game both players use the robust approach, meaning that they
seek to optimize their worst case expected payoff, where the worst
case is taken with respect to the set of possible values for the
uncertain parameters and the expectation is taken with respect
to the mixed strategies of both players (Aghassi & Bertsimas,
2006). Hence the adversary’s best response to the defender’s
strategy x is:

y� ¼ arg min
y

min
~di2 di ;di½ �
~Ci2 Ci;Ci½ �

XN
i¼1

1� ~dixi
� �eCiyi

 !
:

Note that the minimum of
PN

i¼1 1� ~dixi
� �eCiyi

� �
in the above equa-

tion occurs when ~di ¼ di and eCi ¼ Ci, thus giving the attacker’s best

response as y� ¼ argmax
y

PN
i¼1 1� dixi
� �

Ci;yi
� �

. Using the same

robust approach, the defender wants to minimize the maximum
expected damage, therefore her best response to the adversary’s
mixed strategy y is:

x� ¼ arg min
x

max
~di2 di ;di½ �
~Ci2 Ci;Ci½ �

XN
i¼1

1� ~dixi
� �eCiyi

 !
:

The maximum of
PN

i¼1 1� ~dixi
� �eCiyi

� �
in the above equation hap-

pens at ~di ¼ di and ~Ci ¼ Ci. Hence the defender’s best response is

x� ¼ arg min
x

PN
i¼1 1� dixið ÞCiyi

� �
. The following presents the payoff

matrix to both players:
In this matrix at each position the first number is the payoff to
player 1(defender) and the second number is the payoff to player 2
(adversary). Since the payoffs to the players do not add up to zero,
or a fixed amount, this is a non-zero sum game. The following
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lemma gives the necessary and sufficient condition for the non-
zero sum game to have a pure Nash Equilibrium (NE).

Lemma 1. The maximum damage game has a pure Nash equilibrium

if and only if 1� d1
� �

C1 P C2.
Proof. Suppose we have 1� d1

� �
C1 P C2. It is easy to check that

x ¼ 1;0;0; . . . ;0ð Þ; y ¼ 1;0;0; . . . ;0ð Þ is a pure NE strategy pair. This
establishes the sufficiency part. We prove the necessity part by

contradiction, suppose that 1� d1

� �
C1 < C2 and the game has a

pure NE, this pure NE is definitely not x ¼ 1; 0;0; . . . ;0ð Þ;
y ¼ 1;0;0; . . . ;0ð Þ, because at this strategy profile the adversary
can strictly increase his payoff by attacking site 2. Moreover it
has to be on the diagonal of the matrix i.e. xi ¼ yi ¼ 1 for some

i > 1 however, this implies that 1� di

� �
Ci P C1 which contradicts

our assumption of sorted Cis, thus proving the necessity part. h

Lemma 2 characterizes the conditions under which some
strategies of the adversary are dominated by a linear combination
of other strategies. This lemma helps us find a critical index to
compute the NE.

Lemma 2. If
Pk

j¼1
Cj�Ck

djCj
> 1, then the adversary’s strategies l P k are

strictly dominated by a mixed strategy that is composed of pure
strategies j for 1 6 j < k, i.e., there exist ki P 0; 1 6 i 6 k� 1 withPk�1

i¼1 ki ¼ 1 such that:

k1

1� d1

� �
C1

C1

C1

..

.

C1

2666666664

3777777775
þ k2

C2

1� d2

� �
C2

C2

..

.

C2

266666664

377777775þ � � �

þ kk�1

Ck�1

..

.

1� dk�1

� �
Ck�1

..

.

Ck�1

2666666664

3777777775
>

Cl

..

.

..

.

1� dl

� �
Cl

..

.

Cl

26666666666664

37777777777775
: ð1Þ
Proof. The inequality holds for rows r P k because Cis are sorted,

i.e.,
Pk�1

j¼1 kjCj > Ck.

For rows r < k, consider the assumption
Pk�1

j¼1
Cj�Ck

djCj
> 1. After

some algebraic manipulations this inequality can be rewritten as:

1� dr

� �
Cr

drCr
Pk�1

m¼1
1

dmCm

þ
Xk�1

j¼1;j–r

Cj

djCj
Pk�1

m¼1
1

dmCm

> Ck:

Setting kj ¼ 1

djCj

Pk�1

m¼1
1

dmCm

gives the result as:

kr 1� dr

� �
Cr þ

Xk�1

j¼1;j–r

kjCj > Ck > Cl: �

Lemma 3 complements Lemma 2 in characterizing the sites that
should be in the mixed Nash equilibrium.
Lemma 3. If
Pk

j¼1
Cj�Ck

djCj
< 1, any strategy profile with xk ¼ 0 is not a

Nash equilibrium.
Proof. By contradiction. Suppose the Nash equilibrium holds with

xk ¼ 0. If yk ¼ 0, consider a critical k� P k such that
Pk�

j¼1
Cj�Ck�

djCj
<

1 <
Pk�þ1

j¼1
Cj�Ck�þ1

djCj
. Using Lemma 1 we can conclude that both play-

ers are playing a mixed strategy. Moreover using Lemma 2 we
have: xj ¼ 0; yj ¼ 0; 8j > k�. Therefore the adversary is indifferent
towards his choices i ¼ 1; . . . ; k�; i – k, in other words:

1� d1x1
� �

C1 ¼ . . . ¼ 1� dk�1xk�1

� �
Ck�1 ¼ 1� dkþ1xkþ1

� �
Ckþ1

¼ . . . ¼ 1� dk�xk�
� �

Ck� :

Solving these equations along with the equation
Pk�

j¼1;j–kxj ¼ 1
yields:

xk� ¼
1�Pk�

j¼1;j–k
Cj�Ck�

djCj

dk�Ck�
Pk�

j¼1;j–k
1

djCj

:

Since
Pk�

j¼1
Cj�Ck�

djCj
< 1 and Ck� 6 Ck, the following inequality holds

Xk�
j¼1;j–k

Cj � Ck

djCj

< 1;

which could be rewritten as:

Xk�
j¼1;j–k

Cj � Ck� þ Ck� � Ckð Þ
djCj

< 1:

This further simplifies to

Ck� � Ckð Þ <
1�Pk�

j¼1;j–k
Cj�Ck�

djCjPk�

j¼1;j–k
1

djCj

¼ dk�Ck�xk� ;

giving 1� dk�xk�
� �

Ck� < Ck. Therefore the adversary can strictly

improve his payoff by increasing yk to 1. Hence yk ¼ 1 should hold.
Now the defender can strictly increase his/her payoff by increasing
xk to 1. This is in contradiction with our assumption of xk ¼ 0 being
a Nash equilibrium. h

Theorem 1 states the uniqueness of the Nash equilibrium (NE).

Theorem 1. The maximum damage game has a unique NE.
Proof. Consider a critical k� such that
Pk�

j¼1
Cj�Ck�

djCj
< 1 <Pk�þ1

j¼1
Cj�Ck�þ1

djCj
, if k� ¼ 1 then Lemma 1 and Lemma 2 imply that the

game has a unique pure strategy Nash equilibrium. If k� P 2, then
using Lemma 2 and Lemma 3, the mixed strategy Nash equilibrium
is determined by solving the following systems of equations:

System 1:

1� d1x1
� �

C1 ¼ 1� d2x2
� �

C2 ¼ . . . ¼ 1� dk�xk�
� �

Ck� ;
Xk�
j¼1

xj ¼ 1:

System 2:

� 1�d1ð ÞC1y1�
Xk�

j¼1;j–1

Cjyj ¼ . . .¼� 1�dk�ð ÞCk�yk� �
Xk�

j¼1;j–k�
Cjyj;

Xk�
j¼1

yi ¼1:

Both systems have unique solutions. h
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2.2. Model 2: Infiltration game

In this model the adversary wants to infiltrate, i.e., the adver-

sary values all sites equally. Let eC with eC 2 C; C
h i

denote this com-

mon value. Assume that the defender knows the intention of the
adversary. Hence the expected payoff to the adversary under the
mixed strategy pair ðx; yÞ of the defender and the adversary,
respectively, is:

u2
A x; yð Þ ¼

XN
i¼1

1� edixi
� �eCyi:

Following the robust approach, the adversary seeks to maxi-
mize the minimum expected damage. Using the same reasoning
as in Model 1, the adversary’s best response to the defender’s
mixed strategy x is:

y� ¼ arg max
y

XN
i¼1

1� dixi
� �

C yi

 !
:

Similarly, the defender wants to minimize the maximum
expected damage, therefore her best response is:

x� ¼ arg min
x

XN
i¼1

1� dixið ÞCi yi

 !
:

The following matrix demonstrates the payoff to both players:
Note again that this is a non-zero sum game. It is obvious that
the infiltration game does not have a pure NE. Lemma 4 uses this
fact to characterize the strategies that take part in the mixed strat-
egy NE. Specifically, this lemma proves that all of the sites will take
part in the mixed strategy NE.

Lemma 4. For the infiltration game, any strategy profile with xk ¼ 0
for some 1 6 k 6 N is not a Nash equilibrium.
Proof. By contradiction. Clearly, such a game does not have a pure
Nash equilibrium. Suppose that there is a Nash equilibrium with
xk ¼ 0 and xj > 0; 8j– k. The mixed strategy of the defender is
determined by solving the following system of equations:

1� d1x1
� �

C ¼ . . . ¼ 1� dk�1xk�1

� �
C ¼ 1� dkþ1xkþ1

� �
C ¼ . . .

¼ 1� dNxN
� �

C;

which along with
PN

j¼1; j–kxj ¼ 1, gives:

xj ¼
1
djPN

i¼1; i–k
1
di

� � ; 8j– k:
Since xj > 0 for j– k, this implies that:

1� djxj
� �

C ¼ 1� 1PN
i¼1; i–k

1
di

� �
0B@

1CAC < C;

the right hand side corresponding to the adversary’s payoff if an
attack targets node k. Therefore the adversary can strictly increase
his payoff by increasing yk to 1. The defender can also improve
her payoff by setting xk ¼ 1, however this contradicts our assump-
tion that the current set of strategies is a NE. h
Theorem 2. The infiltration game has a unique NE.
Proof. Lemma 4 implies that all of the sites should be involved in
the mixed strategy NE. Therefore mixed strategy NE is the unique
solution to the following system of 2N linearly independent
equations with 2N unknowns:

1�d1x1
� �

C¼ 1�d2x2
� �

C¼ . . .¼ 1�dNxN
� �

C;
XN
i¼1

xi ¼1; ð3Þ

� 1�d1ð ÞC1y1�
XN

j¼1;j–1

Cjyj ¼ . . .¼� 1�dNð ÞCNyN �
XN

j¼1;j–N

Cjyj;
XN
i¼1

yi ¼1: �

ð4Þ
Remark 1. Clearly, C can be eliminated in Eq. (3). Therefore the
Nash equilibrium does not depend on the value of C or C (upper
and lower bounds on the infiltrating adversary’s valuation). This
is natural because for the infiltrating adversary all sites are equal
and the value of these sites does not affect his behavior. Moreover,
the defender has her own valuation of the sites, therefore the value
of C or C does not affect her behavior either. Hence it is natural that
the NE does not depend on the value of C or C. However this was
not the case in the previous infrastructure security game models.
This is mainly due to the zero-sum nature of the previous models
(Garnaev et al., 2014).
2.3. Model 3: Security game with private information

In this model we assume that the defender does not know about
the intention of the adversary (inflict maximum damage or infil-
trate). We use a Bayesian-robust approach to model this game.
Meaning that all players use a robust approach to contend with

uncertainty of eC ; ~Ci and ~di, however the defender uses a Bayesian
approach to contend with the information asymmetry. In other
words, the defender knows that the adversary attempts to inflict
maximum damage with probability q, and he attempts infiltration
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with probability 1� q. Using the Bayesian robust approach and the
definition of NE, the following conditions should be satisfied:

y1� ¼ argmax
y1

min
~di2 di ;di½ �;
~Ci2 Ci;Ci½ �

XN
i¼1

1� ~dix�i
� �

~Ciy1i

 !
;
XN
i¼1

y1�i ¼ 1; y1�i P 0;

y2� ¼ argmax
y2

min
~di2 di ;di½ �;
~C2 C;C½ �

XN
i¼1

1� ~dix�i
� �eCy2i

 !
;
XN
i¼1

y2�i ¼ 1; y2�i P 0;

x� ¼ arg min
x

max
~di2 di ;di½ �;
~Ci2 Ci;Ci½ �

q
XN
i¼1

1� ~dixi
� �

~Ciy1�i þ 1�qð Þ
XN
i¼1

1� ~dixi
� �

~Ciy2�i

 !
;

XN
i¼1

x�i ¼1; x�i P0;

where y1 is the mixed strategy of the maximum damage
adversary, y2 is the mixed strategy of the infiltrating adversary,
and x is the defender’s mixed strategy as before. Note thatPN

i¼1 1� ~dix�i
� �

~Ciy1i
� �

is minimized at ~di ¼ di and

~Ci ¼ Ci;
PN

i¼1 1� ~dix�i
� �eCy2i� �

is minimized at ~di ¼ di and eC ¼ C,

finally q
PN

i¼1 1� ~dixi
� �

~Ciy1�i þ 1� qð ÞPN
i¼1 1� ~dixi
� �

Ciy2�i
� �

is maxi-

mized at ~di ¼ di and ~Ci ¼ Ci. Thus

y1� ¼ argmax
y1

XN
i¼1

1� dix�i
� �

Ciy1i

 !
;

y2� ¼ argmax
y2

XN
i¼1

1� dix�i
� �

Cy2i

 !
and

x� ¼ arg min
x

q
XN
i¼1

1� dixið ÞCiy1�i þ 1� qð Þ
XN
i¼1

1� dixið ÞCiy2�i

 !
:

This optimization problem can be solved by direct application
of Karush–Kuhn–Tucker conditions (Kuhn & Tucker, 1951). How-
ever more insight can be gained by analyzing this game. The fol-
lowing theorem characterizes the Nash equilibrium for the
security game with private information.

Theorem 3. The following strategy profile is a Nash equilibrium for
the security game with private information. Let k be an integer such

that /k 6 1 < /kþ1 where /i ¼
Pi

j¼1
Cj�Ci

djCj
, and m be an integer such

that wm�1 < q 6 wm where wi ¼
Pi

j¼1
1

djCj

� �
PN

j¼1
1

djCj

� �.
If m 6 k then

x�j ¼

1�
PN

i¼1
1
di
þ
Pm

i¼1

Cj

Cidi
þ Cj

Cm

PN

i¼mþ1
1
diPm

i¼1

Cjdj

Cidi
þCjdj

Cm

PN

i¼mþ1
1
di

� � ; j 6 m� 1;

1�
Pm

i¼1

Ci�Cm

diCi

� �
dm
Pm

i¼1

Cm

Cidi
þ
PN

i¼mþ1
1
di

� � ; j ¼ m;

1�
Pm

i¼1

Ci�Cm

diCi

� �
dj
Pm

i¼1

Cm

Cidi
þ
PN

i¼mþ1
1
di

� � ; j > m;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð5Þ
y�1j ¼

1

q djCjð Þ PN

i¼1
1

diCi

� � ; j < m;

1�
Pm�1

i¼1
1

diCi

q
PN

i¼1
1

diCi

; j ¼ m;

0; j > m;

8>>>>>><>>>>>>:
ð6Þ

and

y�2j ¼

0; j < m;Pm

j¼1
1

djCj

� �
�q

PN

j¼1
1

djCj

� �
1�qð Þ

PN

j¼1
1

djCj

� � ; j ¼ m;

1

1�qð Þ djCjð Þ PN

i¼1
1

diCi

� � ; j > m:

8>>>>>>>>><>>>>>>>>>:
ð7Þ

If m > k then

x�j ¼
1

djCjPk

i¼1
1

diCi

1�Pk
i¼1

Ci�Cj

diCi

� �
; j 6 k;

0; j > k;

8><>: ð8Þ

y�1j ¼
1

djCjPk

l¼1
1

dlCl

; j 6 k;

0; j > k;

8><>: ð9Þ

y�2i <
q

1� qð Þ
1

diCiPk
l¼1

1
dlCl

;

0@ 1A8i > k;
XN
j¼kþ1

y�2j ¼ 1: ð10Þ
Proof. See Appendix A. h
Remark 2. Similar to the infiltration game, also in this game the
Nash equilibrium does not depend on the value of C or C (upper
and lower bounds on the infiltrating adversary’s valuation).
Remark 3. For the second case, i.e., m > k, similar to Garnaev et al.
(2014) there is a continuum of NE strategies for the infiltrating
adversary.
3. Numerical analysis

In this section we apply our approach to real data from Willis,
Morral, Kelly, and Medby (2006) which provides estimates of the
expected annual terrorism losses for the 10 most valuable urban
areas of the United States. We use the proposed robust game
model to allocate defensive resources among these urban areas.
The data is presented in Table 1. In this table, three aspects of
the expected damage have been estimated: monetary value (repre-
sented by expected property loss), mortality value (represented by
total number of fatalities and injuries) and political value (repre-
sented by total air departures from major and minor airports). In
the following sections each one of these dimensions will be inves-
tigated individually.

3.1. Analysis for monetary value data

In this section we perform the analysis based on the monetary
data for each urban area. We study how the defender’s strategy is
affected by the probability of a maximum damage type adversary,
q. This probability is an indicator of the uncertainty over type of
the adversary i.e. maximum damage or infiltrating. We also study
the effect of this probability on the expected property loss at each
urban area.



Table 1
Expected damage data for the 10 urban areas with the highest losses.

Urban area Expected
property loss
($million)

Expected
fatalities &
injuries

Air departures
(major & minor

airports)

New York (NY) 413 5350 23599
Chicago (CH) 115 1212 39949

San Francisco (SF) 57 472 19,142
Washington, DC-MD-VA-WV

(WDC)
36 681 17,253

Los Angeles-Long Beach (LA) 34 402 28,816
Philadelphia, PA-NJ (PHL) 21 199 13,640
Boston, MA-NH (BSTN) 18 225 11,625

Houston (HSTN) 11 160 20,979
Newark (NW) 7.3 74 12,827

Seattle-Bellevue-Everett (STL) 6.7 88 13,578

Total 719 8863 201,408
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For the probability of detecting an attack set to 0:9, i.e., d ¼ 0:9,
Fig. 1 displays how defensive strategy may vary among sites for
different values of q, and also Fig. 2 illustrates how the expected
property loss at each urban area may vary over q. Fig. 1 shows that
the defensive resources are evenly distributed for low values of q.
Fig. 2. Distribution of expected property loss.

Fig. 1. Allocation of defensive resources for monetary data.
This is due to the fact that for low values of q, the defender effec-
tively plays the game against an infiltration type attacker, hence
the defense resources are distributed proportionally with respect
to the detection probabilities at different urban areas. However
since we have assumed the same detection probability for each
area as di ¼ d ¼ 0:9, the defensive resources are evenly distributed.
As q increases beyond a certain level, more resources are allocated
to NY and CH, which are the areas with highest property loss, and
fewer resources are allocated to other areas. This shift in resource
allocation happens around q ¼ 0:05, that corresponds to a thresh-
old point. As q increases further, the game is effectively turned into
a maximum damage game and all defensive resources are dis-
tributed between two areas, namely NY and CH. Further increase
in q does not change the allocation of resources. Fig. 2 shows dis-
tribution of the expected property loss at each urban area as a
function of q. As seen in this figure, for low values of q, since the
attacks are distributed among all areas and the defensive strategy
is also to distribute the defensive resources evenly among all areas,
the expected damage is roughly the same for all areas. As the value
of q increases beyond a certain level, the defensive strategy
changes to play the MD game. As the value of q increases further,
the expected damage to important areas (such as NY, CH and SF)
Fig. 3. Expected property loss over various detection probabilities.

Fig. 4. Expected property loss over various uncertainty ranges.
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increase and the expected damage to other areas decrease. This
effect is observed because the adversary’s attacks get more tar-
geted towards high impact areas as q increases. Fig. 3 shows the
expected total property loss as a function of q for different values
of probability of detection, d. As seen in this figure, the damage
is higher for smaller values of d and the difference increases as q
increases. This is due to the increasing importance of the efficiency
of defensive resources as the adversary targets high impact areas
with higher probability.

Fig. 4 displays how expected total property loss changes as a
function of q over various uncertainty ranges. As seen in this figure,
for wider ranges of uncertainty the expected total damage is higher
than scenarios with smaller uncertainty ranges.
Fig. 5. Allocation of defensive re

Fig. 6. Distribution of expected
3.2. Analysis for mortality value data

In this section we perform the robust game analysis based on
the mortality value of each urban area. We study how the defend-
ers strategy is affected by q. For di ¼ d ¼ 0:9, Fig. 5 illustrates how
the defensive strategy changes for various values of q. As seen in
the figure, for low values of q, because the game is effectively an
infiltration game, defensive resources are evenly distributed
among urban areas. As q increases beyond a certain level, more
resources are allocated to NY and CH, which are the areas with
highest population density, and fewer resources are allocated to
other areas. This shift in resource allocation happens around
q ¼ 0:05. As q increases further, the game is effectively turned into
sources for mortality data.

damage for mortality data.



Fig. 7. Expected total damage for various detection probabilities.

Fig. 8. Expected total damage for various uncertainty ranges.

Fig. 9. Allocation of defensive r
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a MD game and all defensive resources are distributed between
two major areas, namely NY and CH. Further increase in q does
not change the allocation of resources. Fig. 6 shows how the
expected number of fatalities and injuries at each urban area
changes for different values of q. As seen in this figure for low val-
ues of q, the expected damage is roughly the same for all areas. As
the value of q increases beyond a certain level, the defensive strat-
egy changes to play the MD game. As the value of q increases fur-
ther, the expected damage on important areas (such as NY, CH and
SF) increases and the expected damage for other areas decrease.
This is due to the fact that as q increases, the adversary targets
more important areas with higher probability. Fig. 7 displays the
expected total damage as a function of q for various values of d.
As seen in this figure, the damage is higher for smaller value of d
and the difference increases as q increases. Fig. 8 illustrates how
the expected total damage changes as a function of q for various
uncertainty ranges. As seen in this figure, for wider ranges of
uncertainty the expected total damage is higher than scenarios
with smaller uncertainty ranges.
3.3. Analysis for political value data

In this section we perform the analysis based on the political
value of each urban area. We study the effect of q on the defenders
strategy. For di ¼ d ¼ 0:9, Fig. 9 shows how the defensive strategy
changes for different values of q, and also Fig. 10 shows how the
expected damage on each urban area may vary for different values
of q.

As seen in Fig. 9, for low values of q, defensive resources are
evenly distributed. As q increases beyond a certain level, more
resources are allocated to CH, LA and NY which are the most
important areas in terms of political value, and fewer resources
are allocated to other areas. This shift in resource allocation hap-
pens around q ¼ 0:05, which corresponds to a threshold point. Fur-
ther shifts in defensive strategy happen at around
q ¼ 0:1; q ¼ 0:15 and q ¼ 0:2. At each of these threshold points,
more defensive resources are assigned to the most important areas
and fewer resources are allocated to other areas. As q increases fur-
ther, the game is effectively a MD game and all defensive resources
are distributed among four areas, namely CH, LA, NY and HSTN.
esources for political data.



Fig. 10. Distribution of expected damage for political data.

Fig. 11. Expected total damage for various probability of detection. Fig. 12. Expected total damage for various uncertainty ranges.
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After a certain point, further increase in q does not change the allo-
cation of resources.

Fig. 10 displays the average expected damage to each urban
area as a function of q, for low values of q, the expected damage
is roughly the same for all areas. As the value of q increases further,
both defender and the adversary focus more on the most important
areas, therefore the expected damage on important areas (such as
CH, LA, NY and HSTN) increases and the expected damage for other
areas decrease.

Fig. 11 shows the expected total damage as a function of q
for various values of d. As seen in this figure, the damage is
higher for smaller value of d and the difference increases as q
increases.

Fig. 12 illustrates how the expected total damage changes as a
function of q for various uncertainty ranges. As seen in this figure,
for wider ranges of uncertainty the expected total damage is higher
than scenarios with smaller uncertainty ranges.
4. Conclusions and future research

In this paper we used a robust approach to model parameter
uncertainty in the infrastructure security games. We developed
three distribution-free models of incomplete informations games
in which the players use a robust approach to contend with param-
eter uncertainty: maximum damage game, infiltration game and
the game with information asymmetry. For the first two models,
we prove existence and uniqueness of the Nash equilibrium and
for the third model we characterize the shape of the Nash equilib-
rium. We showed that for the robust game with private informa-
tion, the equilibrium strategy is of threshold type. We then
applied the proposed approach to the real data on the expected
annual terrorism losses at the 10 most valuable urban areas of
the United States. We used the proposed robust game model to
allocate defensive resources among these urban areas based on
three aspects of the expected damage.
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This paper extends the previous models by considering a non-
zero-sum robust setting for the infrastructure security games.
However, there are some limitations that call for further research
in this area. Extending the model to accommodate multiple
defenders and/or multiple adversaries is of current interest. More-
over, our proposed models assume that the detection probabilities
are fixed and known in advance. Releasing this assumption is
another avenue for future research in this area.

Appendix A. Proof of Theorem 3

Proof. The proof follows similar steps as the one in Garnaev et al.
(2014). By definition of Nash Equilibrium, ðx; ðy1; y2ÞÞ is an
equilibrium if and only if for some v1; v2 and v:

ðdixi � 1ÞCi
¼ v1; y1i > 0;
P v1; y1i ¼ 0;

(
ðA:1Þ

ðdixiÞC
¼ v2; y2i > 0;
P v2; y2i ¼ 0;

(
ðA:2Þ

q diCiy1i �
XN
j¼1

Cjy1j

 !
þ ð1� qÞ diCiy2i �

XN
j¼1

Cjy2j

 !
¼ v ; xi > 0;
6 v ; xi ¼ 0:

�
ðA:3Þ

These conditions imply that 0 6 v2 6 C and v1 6 0. There are two
possible cases: (A) xi > 0 for every i. (B) xi ¼ 0 for some i. As will
be shown shortly, these two cases are equivalent to the cases
m 6 k and m > k, respectively.

Case (A): xi > 0 for all i
Then, Eq. (A.2) indicates that v2 > 0. Moreover, from Eq. (A.3),

for every i, one can deduce that only three cases are possible:
Case A1: y1i > 0; y2i > 0: By Eqs. (A.1) and (A.2),

ðdixi � 1ÞCi ¼ v1, and dixiC ¼ v2 holds, hence

Ci ¼ � v1

1� v2

C

; and xi ¼ v2

diC
¼ 1

di

v1

Ci
þ 1

� �
; 8 fi : y1i ; y2i > 0g:

ðA:4Þ
Case A2: y1

i > 0; y2
i ¼ 0: Then, the appropriate equality and

inequality from (A.1) and (A.2) become ðdixi � 1ÞCi ¼ v1 and

dixiC > v2, respectively, thus giving

Ci P � v1

1� v2

C

; and xi ¼ 1

di

v1

Ci
þ 1

� �
; 8 fi : y1i > 0; y2i ¼ 0g:

ðA:5Þ
Case A3: y1

i ¼ 0; y2
i > 0: The appropriate inequality and

equality from (A.1) and (A.2) are ðdixi � 1ÞCi P v1 and dixiC ¼ v2,
respectively, therefore

Ci 6 � v1

1� v2

C

; and xi ¼ v2

diC
; 8 fi : y1i ¼ 0; y2i > 0g: ðA:6Þ

Now, since Ci values are sorted it is obvious that there exists an m
such that

Cm ¼ � v1

1� v2

C

;

y1i

> 0; i 6 m� 1;
P 0; i ¼ m;

¼ 0; i P mþ 1;

8><>: ðA:7Þ
y2i

¼ 0; i 6 m� 1;
P 0; i ¼ m;

> 0; i P mþ 1;

8><>: ðA:8Þ

and:

xi ¼

1
di

v1

Ci
þ 1

� �
; i 6 m� 1;

v2

dmC
¼ 1

dm

v1

Cm
þ 1

� �
; i ¼ m;

v2

diC
; i P mþ 1:

8>>>><>>>>: ðA:9Þ

In turn, Eqs. (A.3), (A.7) and (A.8) imply:

y1i ¼
vþð1�qÞ

PN

j¼1
Cjy

2
j
þq
PN

j¼1
Cjy

1
j

diCiq
; i 6 m� 1;

y1m; i ¼ m;

0; i P mþ 1;

8>>><>>>: ðA:10Þ

y2i ¼
0; i 6 m� 1;
y2m; i ¼ m;

vþð1�qÞ
PN

j¼1
Cjy

2
j
þq
PN

j¼1
Cjy

1
j

diCið1�qÞ ; i P mþ 1;

8>>><>>>: ðA:11Þ

and:

qy1m þ ð1� qÞy2m ¼ 1
dmCm

v þ ð1� qÞ
XN
j¼1

Cjy2j þ q
XN
j¼1

Cjy1j

 !
: ðA:12Þ

From Eqs. (A.10) and (A.11) it can be easily seen that the right hand
side of (A.12) can be written as

qy1m þ ð1� qÞy2m ¼ diCiqy1i
dmCm

; 8i 6 m� 1; ðA:13Þ

qy1m þ ð1� qÞy2m ¼ diCið1� qÞy2i
dmCm

; 8i P mþ 1: ðA:14Þ

Because y1 and y2 are probability vectors, we haveXN
j¼1

y1i ¼ 1; and
XN
j¼1

y2i ¼ 1:

Hence, summing Eq. (A.13) for 1 6 i 6 m� 1 yields 1� y1m, while
summing Eq. (A.14) for mþ 1 6 i 6 N yields 1� y2m and both
provide the following equalities respectively.

qy1m
Xm
j¼1

1
djCj

þ ð1� qÞy2m
Xm�1

j¼1

1
djCj

¼ q

dmCm

;

qy1m
XN

j¼mþ1

1
djCj

þ ð1� qÞy2m
XN
j¼m

1
djCj

¼ 1� q

dmCm

:

Finally, summing the above equations gives

qy1m þ ð1� qÞy2m ¼ 1

dmCm
PN

j¼1
1

djCj

;

in turn this leads to the unique solution in Eqs. (6) and (7).
In order to compute m note that y1 and y2 are probability

vectors, thus y2m P 0; y1m P 0 in Eqs. (6) and (7), implying that
q 6 wm and q P wm�1, respectively.

The defender’s strategy can be obtained from (A.1) and (A.2)
that indicate

xi ¼ v1 þ Ci

Cidi

; i 6 m; ðA:15Þ
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xi ¼ v2

Cdi

; i P m; ðA:16Þ

together with the normalization equation,
PN

i¼1xi ¼ 1, yielding Eq.
(5). To show that m 6 k, it is enough to show /m 6 1. From Eq.

(A.15), we have xm ¼ v1þCm

Cmdm
, which leads to v1 P �Cm. Using this

inequality, we have:

/m ¼
Xm
j¼1

Cj � Cm

djCj

6
Xm
j¼1

Cj þ v1

djCj

¼
Xm
j¼1

xj 6 1:

Case B:
Suppose there exists an i such that xi ¼ 0. Then by (A.2) v2 ¼ 0,

therefore y2i ¼ 0 for xi > 0. From Eqs. (A.1)–(A.3), for every i, one
can deduce that only three cases are possible:

Case B1: y1i > 0; y2i > 0: Eqs. (A.1) and (A.2), again imply (A.4).
Case B2: y1i > 0; y2i ¼ 0: Then, (A.5) holds.
Case B3: y1i ¼ 0; y2i > 0: Then (A.6) immediately follows.
Since Ci values are sorted, and from Eqs. (A.1), (A.3), (A.4), (A.5)

and (A.6) there exists a k such that

xi ¼
1
di

v1

Ci
þ 1

� �
; y1i > 0;

0; y1i ¼ 0;

8<: ðA:17Þ

y1i ¼
vþð1�qÞ

PN

j¼1
Cjy

2
j
þq
PN

j¼1
Cjy

1
j

diCiq
; i 6 k;

0; i > k;

8<: ðA:18Þ

and

y2i

¼ 0; i 6 k;

6
vþq
PN

j¼1
Cjy

1
j
þð1�qÞ

PN

j¼1
Cjy

2
j

diCið1�qÞ ; i > k:

8<: ðA:19Þ

Solving these equations together with the normalization equations
leads to the solution characterized in Eqs. (8)–(10).

To compute k, note that xk P 0, implying /k 6 1. To show that
m > k it is enough to show wk < q. Eq. (10) gives

y�2i <
q

1� qð Þ
1

diCiXk
l¼1

1
dlCl

0BBBB@
1CCCCA; 8i > k;

XN
j¼kþ1

y�2j ¼ 1:

Using these equations, we have:

1 ¼
XN
j¼kþ1

y�2j <
q

1� q

PN
j¼kþ1

1
djCjPk

j¼1
1

djCj

0@ 1A;

which leads to wk ¼
Pk

j¼1
1

djCjPN

j¼1
1

djCj

< q. This completes the proof. h
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