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ABSTRACT
Motivated by the need to study traffic flow affected by in-
cidents we consider M/M/C queueing system where servers
operate in a Markovian environment. When a traffic inci-
dent happens, either all lanes or part of a lane is closed to
the traffic. As such, we model these interruptions either as
complete service disruptions where none of the servers work
or partial failures where all servers work at some reduced
service rate. We analyze the system with multiple failure
states in steady state and present a scheme to obtain the
stationary number of vehicles on a link. The special case of
single breakdown case is further analyzed and performance
measures in closed form are obtained.

1. INTRODUCTION
Increased demand for roadway travel on existing roadways
results in a rise in congestion. Congestion leads to de-
lays, decreasing flow rate, higher fuel consumption and in-
evitably pollution, thus has negative environmental effects.
The cost of total delay in rural and urban areas is estimated
by the USDOT to be around $1 trillion per year [29]. Re-
searchers from widely varying disciplines have been paying
attention to modeling the vehicular travel in order to im-
prove the efficiency of the current highway systems. Clas-
sical traffic models are mostly based on the treatment of
interacting vehicles, their statistical distribution, or their
average velocity and density as a function of time and space.
Main modeling approaches can be classified as microscopic
(particle-based) (see e.g., Gazis et al. [14, 15], May and
Keller [27]), mesoscopic (gas-kinetic) (see e.g., Prigogine and
Herman [37]), and macroscopic (fluid-dynamic) (see e.g.,
Lighthill and Whitham [24], and Richards [39]) models (Hel-
bing [19]). An alternative approach is the queueing mod-
els that determine the travel times as a function of enter-
ing and leaving flows. Initially, queueing analysis has been
mainly utilized for the performance evaluation via determin-
istic models (May and Keller [26], and Newell [34]) for traffic
light synchronization (Newell [33]). The stochastic models

include M/M/1 and M/G/1 queues considered by Heide-
mann [17, 18], and Vandaele et al.[41], and M/G/C/C state
dependent models studied by Cheah and Smith [7],and Jain
and Smith [20], where the service rate (the vehicular trav-
eling speed) is assumed to be a decreasing function of the
number of the customers in the system to represent the con-
gestion caused by the traffic volume in practice. Although
this latter queueing model considers congestion, they all ig-
nore the impact of randomly occuring incidents on the traffic
flow.

However, the recurrent congestion generated by excess de-
mand is only part of the problem. Congestion is also caused
by irregular occurrences, such as traffic accidents, vehicle
disablements, and spilled loads and hazardous materials. An
incident is defined here as any occurrence that affects capac-
ity of the roadway (Skabardonis et al.[40]). Well over half of
nonrecurring traffic delay in urban areas and almost 100%
in rural areas are attributed to incidents [29]. The likeli-
hood of secondary incidents increases with the amount of
time it takes to clear the initial incident. USDOT estimates
that the crashes that result from other incidents make up
14 − 18% of all crashess [29]. Continuous monitoring of the
impact of the incident, and effective incident management
can decrease secondary crashes, improve roadway safety and
decrease traffic delays.

In this paper, we analyze the vehicular traffic flow inter-
rupted by incidents using queueing models. Consider vehi-
cles traveling on a roadway link as shown in Figure 1, which
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Figure 1: A two-lane roadway link [4]

is subject to traffic incidents. The space occupied by an in-
dividual vehicle on the road segment can be considered as
one “server”, which starts service as soon as a vehicle joins
the link and carries the “service” until the end of the link
is reached. During an incident, the traffic deteriorates such
that the service rate of all servers decrease. Once an inci-
dent occurs, the incident management system sends a traffic
restoration unit to fix it. The service rates of all servers are



restored to their prior level at the clearance of the incident.
These system level interruptions and restorations are mod-
eled as a Markovian service process(MSP).

Randomly occurring server breakdowns have been consid-
ered for certain queueing models. Researchers studied a
single server queue with random server breakdowns (White
and Christie [42], Gaver[13], Keilson[22], Avi-Itzhak and
Naor [2], Halfin[16], Federgruen and Green [10, 11], and
Fischer[12]), M/M/C queue where each server may be down
independently of the others for an exponential amount of
time (Mitrani and Avi-Itzhak [28]), M/G/∞ queue with al-
ternating renewal breakdowns (Jayawardene and Kella [21]).
Jayawardene and Kella [21] show that the decomposition
property, a well known property of vacation type queues,
holds for such queues: the stationary number of customers
in the system can be interpreted as the sum of the state of
the corresponding system with no interruptions and another
nonnegative discrete random variable.

Considering also the partial failure case, the M/M/1 system
in a two-state Markovian environment where the arrival as
well as the service process are affected, is analyzed via gen-
erating functions first by Eisen and Tainiter [9], then by
Yechiali and Naor [44], and Purdue[38]. Such queues, in
general, in n-state Markovian environment are said to have
Markovian arrival process(MAP)(see, e.g., Neuts [32]) and
Markovian service process (MSP), and might be represented
in Kendall notation as MAP/MSP/1 [36]. Yechiali[43] con-
sidered the general MAP/MSP/1 queue. Neuts [31, 30]
studied M/M/1 and briefly M/M/C queues in a random en-
vironment using matrix-geometric computational methods.
O’Cinneide and Purdue [35], and Keilson and Servi [23] ana-
lyzed the n-state MAP/MSP/∞ queue. For all these queue-
ing models no explicit solution was given. For the special
case of M/M/∞ queue with two-state Markov modulated
arrival process , Keilson and Servi [23] show that the decom-
position property holds, and provided the explicit solution.

Recently, Baykal-Gursoy and Xiao [3] considered the M/M/∞
system with the two-state Markov modulated service pro-
cess, e.g., M/MSP/∞ queue. Using the method introduced
in [23], they proved that this model also exhibits a stochas-
tic decomposition property, and gave the explicit form of the
stationary distribution. For the infinite server queue with
two-state service mechanism, [21] in the complete break-
down case, and [3] also in the partial failure case, are the
first papers showing the validity of decomposition property.
In fact, there has been a recent interest in the systems
where the service rate changes randomly for the single server
queue (Adan and Kulkarni [1], Boxma and Kurkova [5, 6],
and Mahabhashyam and Gautam [25]), and M/M/C queue
with two-state Markov modulated service (Baykal-Gursoy
et al. [4]). The motivation for such single server queues can
be found in the integrated services communication networks
(see the references in [5, 6]).

2. MATHEMATICAL MODEL
Consider a road link as shown in Figure 1 with C servers that
are subject to random system interruptions of exponentially
distributed durations. We assume that there is buffer space
available in front of the link so that the vehicles that cannot
get a server can wait for service. As the most general case we

consider M/M/C queues with n types of server states. The
server states are denoted as S1, . . . , Sn that have associated
service rates µ1, . . . , µn respectively. Service times are as-
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Figure 2: State transitions for M/M/C queue with
deteriorating service

sumed to be independent and identically distributed (i.i.d.)
exponentials. The vehicle arrivals are in accordance with
a homogeneous Poisson process with intensity λ irrespec-
tive of the server state. Movements between server states
include only the moves to the adjacent states as shown in
Figure 2. The state transitions at the boundary states could
be presented respectively. This example represents the case
where S1 corresponds to the normal state and the server
state deteriorates to the next state with each interruption
and the previous server state is restored with each clearance
action. At server state Sj , the interruptions arrive accord-
ing to a Poisson process with rate fj for j = 1, . . . , n − 1,
and the clearance times are i.i.d. exponentials with rate rj

for j = 2, . . . , n. Here fn = 0 and r1 = 0. The model con-
sidered above also includes the case that different types of
failures might arrive at the normal state to transform the
server state either to the moderate failure state or to the se-
vere failure state depending on the severity of the incident.
The clearance times of these incidents also depend on the
incident type. Figure 3 presents this case where the server
states are represented as N corresponding to the normal road
conditions, M corresponding to the moderate incident and
F corresponding to the severe incident conditions. The in-
terruption and vehicle arrival processes, and the service and
clearance times are all assumed to be mutually independent.
In figures 2 and 3, 0 < i < C and k ≥ C. Note that, for
C = 1 the system considered here is a special case of the
MAP/MSP/1 queue studied in [43], since in the later one
the server state can go into any of the other server states.
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three server states



The stochastic process {X(t), Y (t)} describes the state of
the link at time t, where X(t) denotes the number of vehicles
on the link at t, and Y (t) denotes the server state.

Balance Equations
The steady-state balance equations are given below,
State S1,

(λ + f1)P0,S1 = µ1P1,S1 + r2P0,S2 (1)

(λ + f1 + iµ1)Pi,S1 = (i + 1)µ1Pi+1,S1 + r2Pi,S2 + λPi−1,S1

(1 ≤ i ≤ C − 1) (2)

(λ + f1 + Cµ1)Pi,S1 = Cµ1Pi+1,S1 + r2Pi,S2 + λPi−1,S1

(i ≥ C) (3)

State Sn,

(λ + rn)P0,Sn = µnP1,Sn + fn−1P0,Sn−1 (4)

(λ + rn + iµn)Pi,Sn = (i + 1)µnPi+1,Sn + fn−1Pi,Sn−1

+λPi−1,Sn (1 ≤ i ≤ C − 1) (5)

(λ + rn + Cµn)Pi,Sn = CµnPi+1,Sn + fn−1Pi,Sn−1

+λPi−1,Sn (i ≥ C) (6)

State Sj (j = 2, ...n − 1),

(λ + fj + rj)P0,Sj
= µjP1,Sj

+ rj+1P0,Sj+1

+fj−1P0,Sj−1 (7)

(λ + fj + rj + iµj)Pi,Sj
= (i + 1)µjPi+1,Sj

+ rj+1Pi,Sj+1

+fj−1Pi,Sj−1 + λPi−1,Sj
(1 ≤ i ≤ C − 1) (8)

(λ + fj + rj + Cµj)Pi,Sj
= CµjPi+1,Sj

+ rj+1Pi,Sj+1

+fj−1Pi,Sj−1 + λPi−1,Sj
(i ≥ C) (9)

Generating Function
We will use the partial generating functions,

Gj(z) =

∞∑
i=0

ziPi,Sj ,

to write the overall generating function as,

G(z) =
n∑

j=1

Gj(z).

By multiply the balance equations with zi, and summing all
equations for state Sj , we obtain,

[λz(1 − z) + f1z + Cµ1(z − 1)]G1(z) − r2zG2(z)

=

C−1∑
i=0

(z − 1)(C − i)µ1Pi,S1zi, (10)

[λz(1 − z) + rnz + Cµn(z − 1)]Gn(z) − fn−1zGn−1(z)

=

C−1∑
i=0

(z − 1)(C − i)µnPi,Snzi, (11)

[λz(1 − z) + rjz + fjz + Cµj(z − 1)]Gj(z) − rj+1zGj+1(z)

−fj−1zGj−1(z)

=

C−1∑
i=0

(z − 1)(C − i)µjPi,Sj
zj , (j = 2, 3, ...n − 1).(12)

In these n equations, there are nC unknown probabilities,
and we can use the balance equations to reduce them to only
n unknowns, P0,Sj , for j = 1, . . . , n.

Proposition 1: For the n-state M/MSP/C queue, the sta-
bility condition is,

λ <

∑n
j=1 Cµj ·

(∏j−1
i=1 fi ·

∏n
i=j+1 ri

)
∑n

k=1

(∏k−1
i=1 fi ·

∏n
i=k+1 ri

) . (13)

Proof: We know that Gj(1) corresponds to the probability
that the system is in server state Sj in the long run. If we
aggregate all states (i, Sj) in server state Sj as a mega state,
then we can easily obtain the long-run probability that the
system is in state Sj as,

Gj(1) =

∏j−1
i=1 fi ·

∏n
i=j+1 ri∑n

k=1

(∏k−1
i=1 fi ·

∏n
i=k+1 ri

) . (14)

Thus, the stability condition for this system is,

λ <
n∑

j=1

Cµj · Gj(1), (15)

giving the required inequality 13. �

In the next part, we will show that the denominator of G(z)
has n − 1 distinct real roots that are unstable. These poles
have to be eliminated by the zeros of G(z), thus, giving
n − 1 equations in addition to G(1) = 1 to solve for the
n unknowns. To this end, following the notation and the
method introduced in [28], let,

g1(z) = λz(1 − z) + f1z + Cµ1(z − 1),

gj(z) = λz(1 − z) + rjz + fjz + Cµj(z − 1),

(j = 2, 3, ...n − 1),

gn(z) = λz(1 − z) + rnz + Cµn(z − 1).

Further let,

A(z) =

⎡
⎢⎢⎣

g1(z) −r2z 0 · · · · · · 0 0
−f1z g2(z) −r3z · · · · · · 0 0

...
...

...
...

...
...

0 0 0 · · · · · · −fn−1z gn(z)

⎤
⎥⎥⎦ .

�b(z) =

⎡
⎢⎢⎢⎣

∑C−1
i=0 (C − i)µ1Pi,S1zi∑C−1
i=0 (C − i)µ2Pi,S2zi

...∑C−1
i=0 (C − i)µnPi,Snzi

⎤
⎥⎥⎥⎦ , �G(z) =

⎡
⎢⎢⎣

G1(z)
G2(z)

...
Gn(z)

⎤
⎥⎥⎦ .

Equations 10-12 can be written in the following compact
form,

A(z)�G(z) = (z − 1)�b(z).

It is easy to show that A(z) has a singularity at z = 1. Since
|A(z)| is a polynomial (degree of 2n) in z, we may write,

|A(z)| = (z − 1)Q(z), (16)

where Q(z) is a polynomial of degree 2n−1. Using Cramer’s
rule, for all values of z at which A(z) is nonsingular, we have,

|A(z)|Gj(z) = |Aj(z)|(z − 1), i = 1, 2, ...n. (17)

Here, matrix Aj(z) is obtained by replacing the jth column

of A(z) with�b(z). The equation 17 must hold for all z ∈ [0, 1]
since all functions in 17 are continuous and bounded in [0, 1],
in addition the polynomial |A(z)| may have only a finite
number of roots in this interval.

The following lemma would be needed in the proof of The-
orem 1.



Lemma 1: Q(1) > 0.

Proof: Using 16, equation 17 may be rewritten as,

Q(z)Gj(z) = |Aj(z)| j = 1, 2, ...n. (18)

Taking the derivative of equation 16 with respect to z, then
letting z = 1 gives,

Q(1) =
d|A(z)|

dz

∣∣∣∣
z=1

. (19)

Let �aj(z) be the jth row vector of matrix A(z). We know
that,

d|A(z)|
dz

∣∣∣∣
z=1

=

∣∣∣∣∣∣∣∣∣

�a′
1(1)

�a2(1)
.
..

�an(1)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

�a1(1)
�a′
2(1)
.
..

�an(1)

∣∣∣∣∣∣∣∣∣
+ · · · · · ·+

∣∣∣∣∣∣∣∣∣

�a1(1)
�a2(1)

.

..
�a′

n(1)

∣∣∣∣∣∣∣∣∣
. (20)

Using the definition of A(z), we obtain,

∣∣∣∣∣∣∣∣∣∣∣∣∣

�a1(1)
...

�a′
j(1)

..

.
�an(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (Cµj − λ) ·
j−1∏
i=1

fi

n∏
i=j+1

ri.

Then, from 19 and 20, we have,

Q(1) =
n∑

j=1

(Cµj − λ) ·
j−1∏
i=1

fi

n∏
i=j+1

rj . (21)

The result follows from Proposition 1. �

From equations 16, 17, and the definition of G(z), clearly,
the generating function of the number of customers in the
system is,

G(z) =

∑n
j=1 |Aj(z)|

Q(z)
. (22)

Letting z = 1 in equation 18 gives,

|Aj(1)| = Q(1)Gj(1) j = 1, 2, ..., n. (23)

Q(1) and Gj(1) are given by equations 21 and 14. The n−1
of the n equations in 23 are all redundant since multiply-

ing
fj

rj+1
to the jth equation of 23 will give the (j + 1)st

equation. On the other hand, since |Aj(z)| must be zero
whenever Q(z) = 0, 0 ≤ z < 1, the next theorem proves
that the generating function has n−1 unstable poles. Thus,
the remaining equations will be obtained by equating the
nominator of the generating function to zero at these unsta-
ble poles.

Theorem 1: The polynomial Q(z) exactly has n−1 distinct
real roots in the interval (0,1).

By Lemma 1, we have Q(1) > 0. Then, the proof follows
from [28] since A matrix has a similar structure as the model
considered in [28].

3. SPECIAL CASES
In this section we consider the case with a single failure state.
Thus this case reduces to the queue with two-state Markov
modulated service process considered in Baykal-Gursoy et
al. [4]. Since there is only one faiure state we will use the
failure and repair rates without any subscript as f and r.
The service rate under normal conditions is denoted as µ
and when the system failure occurs the service rate reduces
to µ′. Also, let N denote the normal state, and F denote
the failure state. Baykal-Gursoy et al.[4] obtained the gen-
erating function as,

G(z) =

[λz(1 − z) + Cµ′(z − 1) + (r + f)z]
∑C−1

i+0 µziPi,N

+[λz(1 − z) + Cµ(z − 1) + (r + f)z]
∑C−1

i+0 µ′ziPi,F

λ2z3 − (λ2 + Cλµ + λf + Cλµ′ + λr)z2

+(Cλµ + Cλµ′ + C2µµ′ + Cfµ′ + Cµr)z − C2µµ′
.

(24)

In this case, the stability condition is given as

λ <
r

r + f
Cµ +

f

r + f
Cµ′.

By finding the roots of the denominator one of which is in-
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Figure 4: λ = 1.0, µ = 2µ′

side (0, 1), we can obtain all of the unknown probabilities
in the generating function. The expected number in the
system is then obtained from G′(1). Finding the single un-
stable root parametrically so that the generating function
is obtained in closed form is elusive. Thus, in the case of
partial failures µ′ > 0, this procedure is numerical. As an
example, consider an M/M/3 queue subject to interruptions
that reduce the service rate to a half of its normal value. The
expected number of vehicles on the link versus the service
rate µ is plotted in Figure 3. In this figure, λ = 1.0, µ2µ′ ,
and f and r take some particular values. It can be seen from
Figure 3 that the number of vehicles on the link decreases
as the service rate increases. Note that, for the two top
most cases the stability condition requires that µ > 4/9λ,
since r/(r + f) = 1/2. If the service rate does not change,
higher incident frequency or slower clearance rate would lead
to more vehicles on the link. Figure 3 is used to show the
effect of µ′, where µ is fixed at 2 and µ′ is increased inde-
pendently. Similar to Figure 3, we let λ = 1, and f and r
vary over a range. It can be seen that the expected number
of customers also decrease as µ′ increases, more significantly



than in Figure 3, where µ and µ′ increase simultaneously.
Clearly, the stationary number of vehicles on the link when
no incident occurs will constitute the lower bound.
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On the other hand, closed form solutions can be obtained
for the complete breakdown case as will be shown in the
next part.

M/M/C Queues with System Breakdowns and
Repairs (µ′ = 0)
As we have said before, the M/M/1 queue under complete
server breakdown has been studied by Mitrani and Avi-
Itzhak [28], and Gaver [13]. The generating function in this
case can be written as,

G(z) =

r
r+f

(1 − ρ r+f
r

)(1 − λ/δz)

(1 − ρz)(1 − λ/δz) − f
δ

, (25)

where ρ λ
Cµ

with C = 1 and δ = λ+r+f. Since the generat-

ing function of regular M/M/1 queue without interruptions
is G(z) = 1−ρ

1−ρz
, we see from 25 that contrary to Doshi[8]

this system does not exhibit the stochastic decomposition
property.

For the M/M/2 queue, the generation function is given in
(Baykal-Gursoy et al.[4]) as,

G(z) =

r
r+f

(1 − ρ r+f
r

)(1 − λ/δz)

(1 − ρz)(1 − λ/δz) − f
δ

· C + ηz

C + η
, (26)

where η = λ
µ
(λ+r+f

λ+r
).

Finally, we will consider the above M/M/3 queue with com-
plete breakdowns. In this case, the generating function is,

G(z) =
[λ(1 − z) + r + f ](3µP0,N + 2µzP1,N + µz2P2,N )

λ2z2 − (λ2 + λr + fλ + 3λµ)z + 3µ(λ + r)
.

(27)

Since G(1) = 1, equation 27 provides,

3P0,N + 2P1,N + P2,N = −λ

µ
+

3r

r + f
. (28)

Using the balance equations, we evaluate,

P0,F =
f

λ + r
P0,N ;

P1,N =
λ(λ + r + f)

µ(λ + r)
P0,N = ηP0,N ;

P1,F =
f

λ + r
P1,N +

λf

(λ + r)2
P0,N

=
λf(λ + r + f + µ)

µ(λ + r)2
P0,N ;

P2,N =
λ2(λ + r + f)2 + fµλ2

2µ2(λ + r)2
P0,N

=

(
1

2
η2 +

fλ2

2µ(λ + r)2

)
P0,N .

By substituting the above probabilities in equation 28, we
obtain,

P0,N =
3 r

r+f
(1 − ρ r+f

r
)

3 + 2η + 1
2
η2 + fλ2

2µ(λ+r)2

.

We also have,

3P0,N + 2zP1,N + z2P2,N =
3r

r + f

(
1 − ρ

r + f

r

)

·
3 + 2ηz + ( 1

2
η2 + fλ2

2µ(λ+r)2
)z2

3 + 2η + 1
2
η2 + fλ2

2µ(λ+r)2

.

Thus, the final form of generating function is,

G(z) =
(1 − λ

δ
z) r

r+f
(1 − ρ r+f

r
)

(1 − ρz)(1 − λ
δ
z) − f

δ

·
3 + 2ηz + ( 1

2
η2 + fλ2

2µ(λ+r)2
)z2

3 + 2η + 1
2
η2 + fλ2

2µ(λ+r)2

.

(29)

As the number of servers increases, this system converges
to an infinite server queue. Infinite server queues are more
amenable to analysis even in the case of partial failures. It is
shown in (Baykal-Gursoy and Xiao [3]), that the generating
function has the following closed form,

G(z) = e(λ/µ)(z−1)Ψ(z), (30)

where Ψ(z) is the generating function of the mixture of two
independent random variables. Depending on the value of µ′

these two random variables are either in the form of gener-
alized negative binomials (for the complete breakdown case)
or Poissons with means distributed as truncated beta (for
the partial failure case). Clearly, this system (30) exhibits
the decomposition property.

4. CONCLUSIONS
The analysis of M/MSP/C queue with n server states pre-
sented in this paper clearly indicates that explicit solutions
for the general case would be difficult to obtain. But, nu-
merical methods as shown, could always be applied. For the
special case of system breakdowns and repairs (µ′ = 0), the
explicit solutions are obtained. Because breakdowns might
happen during the service time of customers, the service
completion time, i.e., dwell time on a link, will not remain
exponential. So, the system we are solving could be consid-
ered as an M/G/C queue with a special service structure.



There is little known about M/G/C queues that the closed
form solutions obtained in [4] and this paper will help to fill
this gap.
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