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Infrastructure Security Games

M. Baykal-Gürsoy, Z. Duan, H. V. Poor and A. Garnaev

Abstract

Infrastructure security against possible attacks involves making decisions under uncertainty. This

paper presents game theoretic models of the interaction between an adversary and a first responder in

order to study problem of the security within a transportation infrastructure. The risk measure used is

based on the consequence of an attack in terms of the number of people affected or the occupancy level

of a critical infrastructure, e.g. stations, trains, subway cars, escalators, bridges, etc. The objective of the

adversary is to inflict the maximum damage to a transportation network by selecting a set of nodes to

attack, while the first responder (emergency management center) allocates resources (emergency personnel

or personnel-hours) to the sites of interest in an attempt to find the hidden adversary. This paper considers

both static and dynamic, in which the first responder is mobile, games. The unique equilibrium strategy
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pair is given in closed form for the simple static game. For the dynamic game, the equilibrium for the first

responder becomes the best patrol policy within the infrastructure. This model uses partially observable

Markov decision processes (POMDPs) in which the payoff functions depend on an exogenous people

flow, and thus, are time varying. A numerical example illustrating the algorithm is presented to evaluate

an equilibrium strategy pair.

I. INTRODUCTION

The September 11, 2001 attacks introduced the term homeland security into the public consciousness

around the world. In the United States, this term is defined as “a concerted national effort to prevent

terrorist attacks within the United States, reduce America’s vulnerability to terrorism, and minimize

the damage and recover from attacks that do occur” (Homeland Security Act 2002 [1]). Within this

effort, protecting critical infrastructure has become an utmost priority for governments [2]. Executive

Order 13010 [3] signed by President Clinton in 1996 identifies transportation infrastructure as a critical

system supporting the national security and economic well-being of this nation. Moreover, as the Bali

and Madrid bombings illustrate, terrorists also target large crowds. Public transit systems, used daily

by 32 million mass transit riders in the United States, and places of mass gathering such as shopping

malls and stadiums are considered part of the critical infrastructure [4], [5], [6]. Public transit systems

by design are open structural environments equipped to move large number of mass transit patrons in

an effective and efficient manner. Therefore, mass transit systems are considered soft targets similar

to the other public places that are inherently vulnerable and susceptible to terrorist attacks and which,

because of the continuous hours of service, cannot be closed and secured as may other sectors of the

area transportation system [7]. Successful and attempted terrorist attacks throughout the world such

as New York, Bali, Madrid, London, Mumbai, Russia, and Norway clearly demonstrate that terrorists’
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primary mission remains to be mass human casualties in addition to panic and chaos [4]. The threat to

any given infrastructural component or “infrastructure” could be substantially reduced by analyzing the

risk associated with each transit infrastructure, mitigation planning, and employing best prevention and

response policies.

There has been a recent interest in issues related to infrastructure security. A major tool for risk

assessment, probabilistic risk analysis (PRA) [8], has also been applied to terrorism risks [9], [10],

[11], [12], [13]. On the other hand, the National Research Council [14] has emphasized game theoretic

models [15], [16], [17], [18] to counter the need for adaptation to the dynamic behavior of the terrorism

events and adversarial decision-making processes of terrorists. One such model, ARMOR [19], [20], [21],

[22], [23], casts the interdiction problem as a Bayesian Stackelberg game [24], and has been deployed to

secure the Los Angeles International Airport. However, this model is static in the sense that it is solved

every day with new parameters and the payoff functions for players remain the same throughout the day

and the players are assumed to be rational. Aside from the ARMOR game, Brown et al. [25] consider

various Stackelberg games, while others study network interdiction games [26], [27], [28], [29], [30],

[31], [32], [33], [34], [35], secrecy and deception [36], [37], [38], [39], passenger classification [40], [41],

and optimal placement of suicide bomber detectors in a grid structure [42]. Hochbaum and Fishbain [43]

investigate the allocation of mobile sensors in an urban environment in order to detect dirty bombs. Note

that the models in [41], [40] and [42] involve only a single controller and not multiple decision makers

as in game models.

In this paper, we approach the infrastructure security problem via game theory by modeling it via

hide-and-seek games [44], [45], [46], [47], [48], [49], [50], [51], [52], [53]. There are two settings for

such games: static and dynamic. In the static model, a first responder (emergency-management center)
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allocates resources (emergency personnel, or personnel-hours) to sites of interest in an attempt to find an

object (person or bomb, “adversary”) that has been hidden, while the adversary selects a set of best sites to

attack. Once the object is hidden, it cannot move during the search process. Similarly, the first responder

can act only once. Various different games have been defined for dynamic situations depending on the

mobility of the agents. Search games [54] involve a mobile defender and an immobile adversary, while

ambush games [55] have a mobile adversary and an immobile defender, who waits for the adversary to

appear. Finally, if both agents are mobile, the games are called pursuit-evasion or infiltration games [56].

Most research has focused on the case in which the cells are identical. However, Neuts [57] and later

on Sakaguchi [58] consider a zero-sum dynamic search game with node dependent inspection costs.

Moreover, there may be a possibility of type 1 error associated to each node, i.e., the probability that the

first responder finds the adversary given that the adversary is in the searched node is less than or equal to

1. In general, in the hide-and-seek games there are no attack targets, in fact, the adversary is the target.

One exception arises in the interdiction games [35], [32] in which the adversary tries to reach a target

while the defender tries to prevent the adversary from reaching the target, thereby protecting the target.

Recently, interdiction games with various targets have been considered. Such games are called protection

games (please see [59] and the references there in).

In this paper, we study protection games. Focusing on severe attacks, we consider the loss of human

life as the consequence of the attack, i.e., the payoff to the adversary. This measure typically depends on

the occupancy level of the facility and we assume that the occupancy level can be estimated over time.

Hence the crowds are the targets in this game and since they are moving over time they are dynamically

moving targets. The static version of this game becomes a simple zero-sum game related to the one

considered by Neuts [57] and Sakaguchi [58]. However, contrary to their case we observe that in our

game a continuum equilibrium for the adversary may exist under certain conditions. In the dynamic game
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model, we assume that the first responder can move among the nodes to search for a hidden immobile

adversary. This game is called as a patrolling game [46], and [59] with the additional feature of multiple

mobile targets. We sometimes refer to resources allocated to the nodes also as first responders. The main

idea here is that if the emergency-management center has a finite number of first responders, it then

allocates fractions of first responders to the nodes. Throughout we use first responder and defender, and,

respectively, adversary and attacker, synonymously.

Contributions of this paper are itemized below.

• A new static game is introduced that considers the occupancy of a node as the payoff to the adversary.

This game is shown to have a unique equilibrium for the first responder in closed form. However,

the adversary may have continuum of equilibria, also given in closed form. The equilibria are of

threshold type, i.e., the resources are allocated to the nodes with occupancy higher than a threshold

value.

• A novel protection game with dynamically moving targets is introduced, and its solution algorithm

through an illustrative example is provided.

The structure of the paper is as follows. In the next section, we briefly review the relevant literature.

In Section II, we consider the static game and present the unique equilibrium in closed form. In Section

III, a people flow model is introduced. In Section IV, a dynamic game between an immobile adversary

and a mobile first responder is discussed. In Section V, we present a numerical example for the dynamic

game. Finally, further applications and future research directions are discussed in Section VI.
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II. STATIC INFRASTRUCTURE GAME MODEL

In this section, we consider the one-step security problem. The adversary and the first responder

simultaneously choose their strategies over the potential sites. Payoff matrices for both responder and

adversary are based on the occupancy level of each site in the infrastructure. Even when both rivals are

at the same site, there is a probability that the first responder may not detect the adversary. We assume

that the infrastructure can be partitioned into nodes. This could be achieved, for example, as described

in [60], [61]. We further assume that the impact of an attack will be based upon the occupancy level of

the specific node at which the attack happens and can only endanger the people at that node. People in

neighboring nodes will not be hurt directly due to this attack. We assume that the probability of detection,

and the occupancy of each node, are known to both rivals.

Although we represent the infrastructure in the figures as an m by n grid, it will be considered as

an undirected graph with N = mn nodes, which the responder and the adversary can occupy (possible

actions for both players). Bold case letters represent vectors; for example, the occupancy vector is denoted

as O where Oi is the occupancy level of node i = 1, 2, . . . , N , that also gives the expected number of

casualties at node i.

Let (i, j) denote the location of the first responder and the adversary, respectively. In the case in

which both of them are at the same node, (i, i), the adversary can be found by the responder with detection

probability given by PD(i, i)
4
= di, otherwise PD(i, j)

4
= 0 for i 6= j. Therefore, the (i, j)-th component

of the payoff matrix for the responder when the responder is searching node i and the adversary is

attacking node j is, rij = −(1− PD(i, j)Oj) for all i, j = 1, . . . , N. Under the above assumptions, the

payoff matrix R for the first responder is an N ×N matrix with the following elements for the action

pair (i, j) of the first responder and the adversary, respectively:
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R =



i \ j 1 2 · · · N

1 −(1− d1)O1 −O2 · · · −ON

2 −O1 −(1− d2)O2 · · · −ON

...
...

...
. . .

...

N −O1 −O2 · · · −(1− dN )ON


,

with di ∈ (0, 1).

Let x = (x1, x2, . . . , xN )T be a (mixed) strategy column vector for the first responder where xi is

the probability of searching node i. Clearly,
∑N

i=1 xi = 1, and xi ≥ 0, for all i ∈ {1, . . . , N}. A (mixed)

strategy for the adversary, y is similarly defined, where yi is the probability of attacking node i. The

expected payoff to the first responder if the rivals apply mixed strategies x and y is given as follows:

v(x,y) = −
N∑
i=1

xi

 N∑
j=1

Ojyj − diOiyi

 . (1)

The payoff to the adversary is −v(x,y), thus giving a zero-sum game. Note that (x∗,y∗) is a saddle

point (Nash equilibrium) if and only if the following inequalities hold:

v(x,y∗) ≤ v(x∗,y∗) ≤ v(x∗,y) for any (x,y). (2)

Also, v = v(x∗,y∗) is the value of the game.

This game is closely related to a multistage game of Neuts [57] and a two-sided search game suggested by

Sakaguchi [58], but our game has one interesting particular phenomena as is shown in the next theorem;

namely, under particular conditions continuum equilibria could arise.

For the sake of brevity, we assume that

O1 > O2 > · · · > ON . (3)

Next we present a brief version of the theorem that shows the game has a unique equilibrium in
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closed form under certain conditions. However, the adversary may have continuum of equilibria, also

given in closed form under some conditions. The equilibria are of threshold type, i.e., the resources are

allocated to the nodes with value higher than a threshold as given below. The detailed statement and

proof of the theorem can be found in the appendix.

Theorem 1: If v∗ 6= −Ok, then the game has the unique equilibrium (x∗,y∗) given in terms of the

index k ∈ {1, . . . , N} such that ϕk ≤ 1 < ϕk+1, where {ϕi} is a strictly increasing sequence defined as

ϕi =
∑i

j=1(Oj −Oi)/djOj , for i ∈ {1, . . . , N, } and ϕN+1 =∞.

The strategy of the defender is of threshold type given by x∗i =
1/(diOi)

k∑
j=1

1/(djOj)

1−
k∑

j=1

Oj −Oi

djOj

 for

i ≤ k, and 0 if i ≥ k.

The strategy of the adversary is also of threshold type given by y∗i = 1/(diOi)

k∑
j=1

1/(djOj), for i ≤ k,

and 0 otherwise. The value of the game is given by v∗ =
1−

∑k
j=1 1/dj∑k

j=1 1/(djOj)
.

Remark 1 If all the nodes have the same detection probability, i.e. di = d for any i, then xi is decreasing,

i.e. x1 > x2 > . . . > xk, and meanwhile yi is increasing, i.e. y1 < y2 < . . . < yk.

Remark 2

Next, we discuss the exogenous people flow model that will be used in the dynamic game in order

to estimate the occupancy level of each node.

III. PEOPLE FLOW MODEL

We first develop an exogenous people flow model that influences the decision making of the game

players. A number of researchers have used simulation models to describe the characteristics of pedestrian
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flow [62], [63], [64]. Yue et al. [62] introduce a simulation model based on cellular automata on the square

lattice with two-way and four-way pedestrian flow. In this simulation framework, pedestrian movement

is more flexible and adaptive to dynamic conditions than in vehicular flow. Hanish et al. [63] develop

an online simulation tool for pedestrian flow in large public buildings, such as train stations, airports,

shopping centers, etc. There is also research that concentrates on occupancy estimation [65], [66], [67].

Deng et al. [65] introduce a sensor-utility-network (SUN) method for occupancy estimation in buildings.

Other studies have focused on the pedestrian flow in public buildings following special events, such as

football matches, emergency fires, and terrorist attacks, etc., with crowd control and optimal evacuation

as the main objectives [68], [69], [70], [71], [72], [73]. Alternating periods of congestion and slow

movement dominate these cases, and most research on this topic relies on simulation models as in [74]

and [71].

For our purposes, we model people flow in a public building as a linear, stochastic dynamic system,

and assume that some sensory information is available to be used in correcting the occupancy estimates.

In this paper, we will not take into account the effects of special events, and also we will not consider

crowd control problems.

At the microscopic level, people move as if they were in an open queuing network where each node

is considered as a queueing station. Time is discretized, and the time horizon is finite and is equal to T .

Nodes may have external arrivals and departures, from and to the outside, respectively, if there is direct

connection to the outside, such as entrance doors, or train platforms from which people get on or off the

train. Other nodes in the building could be ticket offices, waiting rooms, food courts, shops, hallways,

etc.

For those nodes with entrances, an arrival rate is estimated, captured in a vector λ ∈ RN whose
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elements are arrival rates for each node per unit time. Arrival rates may be time varying, as λ(m),

representing peak and off peak hours during the day. At each time period, people move from one node to

the other according to the probabilities given by the routing matrix, F . We assume that pedestrians are

all similar, and thus, they all have the same routing probability. These assumptions result in the following

stochastic linear dynamic system of equations representing the pedestrian flow:

Om+1 = F T ·Om + λm+1 +Wm+1, Wm+1 ∼ N (0, Q)

Zm = H ·Om + Γm, Γm ∼ N (0,Ξ)

The first equation is the state equation, in which Om denotes the occupancy vector, and Wm denotes

the process noise at time m, which is assumed to be normally distributed with covariance matrix Q. The

second equation is the observation equation. Zm ∈ RM is the measurement vector of actual occupancies

at time m, H is the measurement matrix, and Γ denotes the measurement noise which is normally

distributed with covariance matrix Ξ. These measurements are obtained from video cameras, sensors,

and other inspection methods. Here M may be less than N , meaning that not all node occupancies may

be available. However, we assume that the system is observable.

A Kalman filter is used to predict and correct the occupancy level estimates. The Kalman filter is

an efficient recursive filter that estimates the state of a linear dynamic system from a series of noisy

measurements [75], [76], [77], [78]. At each time period, the responder will observe Zm, the occupancy

vector, and then use these measurements to correct occupancy level forecasts. The equations for the

Kalman filter are as follows:

Ô
−
m+1 = F T · Ôm + λm+1; (4)

Ôm+1 = Ô
−
m+1 +Km+1 · (Zm+1 −HÔ

−
m+1); (5)
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P−m+1 = F T · Pm · F +Q; (6)

Pm+1 = (I −Km+1H) · P−m+1 (7)

where Pm and P−m are the posterior and prior estimation error covariance matrices, respectively. Km+1

is the Kalman gain given by

Km+1 = P−m+1H
T · (HP−m+1H

T + Ξ)−1.

In these equations, Ô
−
m+1 and P−m+1 are the forecast values that are used to determine the initial position

and initial patrol sequence. Ôm+1 and Pm+1 are the corrected values after each measurement. They are

used at the beginning of each time period to reevaluate and update the original patrol sequence.

Example 1 Fig. 1 shows an example representing the node occupancies in a 2 × 2 grid. This figure is

Fig. 1. Node Occupancy

taken from the simulation package we have developed for this application. The number in each node

represents the current occupancy level. Nodes are numbered from 1 to 4, the top left node being 1, and

the bottom right node being 4. Assuming that there are entrances at nodes 1 and 4, we have the following

arrival rate vector:

λT = (λ1, λ2, λ3, λ4) = (λ1, 0, 0, λ4),

where bold letters denote vectors, and the superscript T denotes the vector transpose. Below is a 4× 4
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matrix representing the routing matrix.

F =



0.2 0.3 0.3 0

0.2 0.3 0 0.5

0.4 0 0.1 0.5

0 0.3 0.2 0.2


From this matrix, notice that people leave the infrastructure from node 1 with probability 1− 0.2−

0.3− 0.3 = 0.2, will go to node 2 and 3 with the same probability 0.3, and will stay at node 1 with 0.2

probability. Similarly, people leave node 4 with probability 1 − 0.3 − 0.2 − 0.2 = 0.3. Those nodes in

which people can enter or leave are the entrance doors, as well as the train platforms where they can

get on and off the trains.

IV. DYNAMIC SECURITY GAME

In this section, we consider a mobile first responder dynamically choosing nodes to search for an

immobile adversary. The first responder’s objective is to develop a “best” patrol strategy to find the

adversary with maximum reward or minimum cost. We assume that if the adversary is not caught within

a finite time, say T , the adversary will launch the attack and destroy occupants in the node s/he is in at

time T . The first responder does not know the exact location of the adversary. Furthermore, the responder

may not also have the current occupancy information. However, some sensory data are assumed to be

available in order to develop for example, the above discussed people flow model, and make accurate

estimates. Next, we describe the methodology to obtain best strategies for both players.

A. Strategy Development

Occupancy estimates together with the detection probabilities establish the performance measure

on the infrastructure grid. Note that only the first responder is mobile. Thus, after choosing the initial
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locations the first responder can patrol the premises to find the adversary while the adversary remains at

its initial location. Next, we describe the first responder’s patrol strategy starting from an initial position.

Then, we will discuss the first responder’s and adversary’s strategies for picking the best initial location.

1) First Responder’s Strategy: Consider discrete time periods {m = 0, 1, 2, . . . , T} and the grid

structure representing the infrastructure. The state of the system is given by {lfm, lam,Om, Pm}, where

lfm and lam denote the position of the first responder and the adversary, respectively, at time m. Since

the adversary is immobile, lam = la. However, the adversary’s location cannot be observed and the first

responder has information only about his/her own location, i.e., lfm and Pm; thus, arises the need to use

the POMDP (partially observable Markov decision process) model to solve this problem.

Let the first responder’s belief state be bm = {lfm,pam, Ôm, Pm}. Here, pam is the vector of belief

probabilities of the adversary’s location. Ôm is the estimated occupancy vector at time m. The value

function for the responder at time m = 0, . . . , T − 1 is given by

V f
m(bm) = max

k∈Af{lfm}

{
r(bm, k) + γ · (1− Pr{D|bm, k}) · V f

m+1(ldm+1,p
a
m+1, Ô

−
m+1, P

−
m+1)

}
, (8)

where r(bm, k) denotes the one-step expected reward function for the responder in belief state bm when

action k is applied, and γ denotes the discount factor with (γ ≤ 1), k denotes the responder’s action, i.e.,

the next node in the patrol route, and Af{lfm} denotes the set of responder’s possible actions at the next

time period when the responder’s current location is lfm. Pr{D|bm, k} is the probability of detecting

the adversary given the belief state bm and applying action k. We assume that when the responder

successfully finds the adversary, the game will end, and no more rewards will be earned. Ô−
m+1 and

P−m+1 are the corresponding forecast values of the occupancy levels and the error covariance matrix. The

one-step expected reward function is written as

r(bm, k) = Pr{D|bm, k}(Ôm,k + C), (9)
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where C is the terminal reward for apprehending the adversary. Here Pr{D|bm, k} is equal to

Pr{D|bm, k} = dkp
a
m(k). (10)

Since the attack will materialize at the end of period T , the terminal value function is given as the

negative of the expected casualty due to this attack,

V f
T (bT ) = −

N∑
k=1

paT (k) · ÔT,k. (11)

Note that transitions from Ôm and Pm to Ôm+1 and Pm+1, respectively, are associated with the

people flow model and are given through equations (4) to (7) deterministically. Also because action k

identifies the location of the first responder in the next time period, the transition probability for POMDP

from state bm to bm+1 = {k, pam+1, Ôm+1, Pm+1} is as follows:

Pr {bm+1|bm, k} =


1− Pr{D|bm, k}, for pam+1 as in equations (13) and (14)

Pr{D|bm, k}, for pam+1 = ek.

(12)

In both cases above, the first responder moves to node k to search for the adversary, so the location

of the first responder at time m+ 1 is node k. In the first case, the first responder is not able to detect

the adversary in node k, so the belief probabilities will be updated through equations (13) and (14) given

below. In the second case, the responder finds the adversary in node k, so the belief probability vector

is ek, the kth coordinate vector. The dynamic security game terminates after finding the adversary, at

which point all future value functions V f
m will be 0, and so the corresponding term in equation (8) is

eliminated.

We can write the Bayesian update equations for belief probabilities. If the responder fails to detect

the adversary at time m in node k, then the belief probability of node k is reduced while the belief

probabilities of other nodes are increased as given by

pam+1(k) = Pr
{
lam+1 = k|pam,Detection Failed

}
=

(1− dk) · pam(k)

1− dk · pam(k)
, (13)
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pam+1(j) =
pam(j)

1− dk · pam(k)
for j 6= k,, (14)

where, dk is the detection probability for node k.

The Bellman equation (8), representing the POMDP, together with the terminal value function in

equation (11), can be solved using dynamic programming algorithms. The solution provides a sequence

of actions (patrol strategy) for the first responder, as well as the total expected risk or reward for the

responder, i.e., the value function V f
m(bm). In most cases, given the initial position of the first responder,

the patrol strategy is deterministic. However, due to different detection results and changing occupancy

levels, this patrol strategy will be reevaluated after each search based on the current flow information.

Next, we will discuss the initial position game between the responder and the adversary.

2) Responder and Adversary’s Initial Position Game: The responder and the adversary must decide

on their initial positions first. This is a static game between two players. To obtain the elements of the

reward matrix, say the (i, j)th element, first, the POMDP model generates an optimal patrol sequence

starting from the initial position of the first responder (node i). Then, given the initial position of the

adversary (node j), the expected rewards are calculated based on this patrol sequence. The expected

rewards will be different from the value function obtained in the POMDP. The value function in the

POMDP is the expected reward for every possible location of the adversary, however, the rewards we

obtain for this static game are the expected rewards for the fixed location combination (i, j) of the first

responder and the adversary. In this initial position game, since future sensory information is not available

at the time, forecast occupancy levels are used. The elements of the reward matrix are obtained as follows:

Rf (i, j) =

T−1∑
m=0

Pr{D at time m|S, la = j}γmÔm,j − Pr{No D within T |S, la = j}γT ÔT,j , (15)

where S is the patrol sequence obtained through the POMDP with S(n) denoting the node searched at

time n, and S(0) = i. Pr{No D within T |S, la = j} denotes the probability that the adversary will not
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be detected, thus, the attack at time T will materialize, and is given as

Pr{No D within T |S, la = j} =

m−1∏
n=0

[1− I{S(n) = j}dj ] ,

where I{·} denotes the indicator function for the event represented inside the parentheses, i.e., if the event

happens then the function takes value 1, otherwise its value is zero. Pr{D at time m|S, la = j} denotes

the probability that detection of the adversary happens exactly at time m, given the first responder’s

patrol sequence and adversary’s position, which can be written as

Pr{D at time m|S, la = j} = Pr{No D within m− 1|S, la = j}I{S(m) = j}dj

=

m−1∏
n=0

[1− I{S(n) = j}dj ] · I{S(m) = j}dj , (0 < m < T ),

P r{D at time 0|S, la = j} = I{S(0) = j}dj .

This static game is then solved to obtain the mixed strategy of initial position for the first responder

and the adversary. Note that with this randomized initial position for the first responder, the optimal

patrol sequence will also be randomized.

V. ILLUSTRATIVE EXAMPLE

In this section, we use an example to explain details of the POMDP model and initial position game.

First, we describe the POMDP procedure, and then we present the results of the initial position game

between the responder and the adversary. Together, an optimal patrol strategy for the first responder is

developed.

A 3×3 grid infrastructure is considered, and nodes are numbered from 1 to 9 from top left to bottom

right. The total number of time periods is T = 7. The flow transition probabilities are given below as a

9× 9 matrix:
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F =



0.1 0.3 0 0.2 0 0 0 0 0
0.1 0.2 0.4 0 0.3 0 0 0 0
0 0.3 0.1 0 0 0.4 0 0 0

0.2 0 0 0.1 0.4 0 0.3 0 0
0 0.1 0 0.2 0.4 0.1 0 0.2 0
0 0 0.2 0 0.3 0.1 0 0 0.4
0 0 0 0.2 0 0 0.1 0.3 0
0 0 0 0 0.3 0 0.1 0.2 0.4
0 0 0 0 0 0.1 0 0.2 0.1


.

Arrival rates to each node from outside the infrastructure is as follows:

λ = [25, 0, 20, 0, 0, 0, 10, 0, 15]T .

The numbers of arrivals per period in the various nodes are Poisson random variables with the above

arrival rates. From this, we can see that there are gates at nodes 1, 3, 7 and 9 in this facility. Initial

occupancy levels are given as

O0 = [50, 32, 41, 42, 80, 35, 51, 45, 39]T .

Q is a diagonal matrix with diagonal elements given as

[25, 36, 50, 40, 37, 28, 48, 35, 40].

Ξ is a diagonal matrix with diagonal elements given as

[10, 6, 8, 7, 8, 9, 4, 15, 10].

P0 is a diagonal matrix with diagonal elements given as

[4, 5, 5, 3, 9, 2, 5, 4, 3].

And H is an identity matrix in this example, which means that the measurements are observations of

the actual occupancy levels.

The detection probabilities for each node are

PD = [0.8, 0.9, 0.7, 0.9, 0.6, 0.7, 0.8, 0.75, 0.8]T .
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The prior adversary-location belief probabilities are equally distributed among 9 nodes.

Detection costs are all assumed to be negligible, and the detection terminal reward is also zero. The

discount factor is γ = 1, since this is a short period game, it is appropriate to assume that penalty and

reward are not discounted in such a short period.

A. POMDP Results

First, assuming that the initial position of the responder is known, we use the POMDP model to

optimize the responder’s patrol strategy for each time period. At each time period, the responder will

observe Zm, the occupancy vector through video camera, sensors or other methods, and then use these

measurements to correct occupancy level forecasts. The actual occupancy levels and measurements for

each time period are given as follows:

O =



50 97 52 42 47 45 46 39
32 39 67 63 62 65 63 51
41 92 59 79 54 64 50 58
42 54 44 44 48 43 42 53
80 79 91 111 113 115 113 112
35 35 56 45 57 44 50 43
51 60 34 32 16 45 27 30
45 42 59 50 49 53 53 53
39 71 50 74 64 64 59 59


, Z =



103 53 39 49 43 44 42
37 70 63 65 65 65 51
90 57 79 54 63 49 60
57 47 44 48 40 42 55
77 92 107 109 113 111 110
37 59 47 60 46 52 40
61 37 32 15 44 28 32
42 56 42 45 51 57 57
73 54 75 67 73 61 61


(16)

The actual occupancy levels O is a 9×8 matrix, formed by column vectors O0, O1, . . . , O7. Measurements

Zm for each time period are given in the matrix Z (9 × 7), and column m of Z, Zm, represents the

measurements on actual occupancy levels at time m.

Let the first responder start from node 4. If measurements in Z are not available, then the optimal

patrol sequence for the responder is {4, 5, 8, 9, 6, 3, 2}. However, if they are available, then the first

responder will correct the forecasts on occupancy levels, and then use the POMDP to develop a new
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patrol sequence which will only be used for the next move. The optimal patrol sequence in this case is

{4, 5, 2, 3, 6, 9, 8}. This is different from the previous patrol sequence due to the Kalman filter correction

procedure. Both patrol sequences will check the same nodes, but in different orders, and thus will generate

different expected rewards for the first responder.

The following two matrices contain patrol sequences for the first responder, starting from every initial

node, either without or with actual measurements. The first matrix gives the patrol sequences when Z is

not available, and the second matrix are patrol sequences when Z is available. Each row represents one

patrol sequence.



1 4 5 2 3 6 9
2 1 4 5 8 9 6
3 2 1 4 5 8 9
4 5 8 9 6 3 2
5 8 9 6 3 2 1
6 9 8 5 4 1 2
7 4 1 2 5 8 9
8 9 6 3 2 5 4
9 8 5 4 1 2 3





1 4 5 2 3 6 9
2 1 4 5 6 9 8
3 2 1 4 5 8 9
4 5 2 3 6 9 8
5 8 9 6 3 2 1
6 9 8 5 2 1 4
7 4 1 2 5 8 9
8 9 6 3 2 5 4
9 8 5 4 1 2 3


(17)

Most of the patrol sequences are similar under both cases, except starting from initial nodes 2, 4,

and 6. The patrol sequences will be updated due to the information obtained through measurements.

Updated patrol sequences usually generate better rewards for the first responder.

B. Initial Position Game

When the responder and the adversary decide on their initial positions, the responder does not have

the information about future measurements provided in Z. So Z is not needed in this procedure. For each

initial position of the first responder, the optimal patrol sequence is already given in the first matrix of

equation (17), based only on the forecast occupancy levels. The people flow model forecasts the future

occupancy levels to provide expected risk measures throughout the finite time period T .
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Given the position of both the first responder and the adversary, and the patrol sequence, the expected

rewards can be easily calculated by using equation (15). So, Rf , the reward matrix for the first responder

in the initial position game can be built.

Given the simplest case, in which the initial position game is a zero-sum game, the following Nash

Equilibrium strategies for the first responder and the adversary are obtained:

X∗ =(0.1464, 0.0000, 0.0000, 0.4776, 0.0000, 0.0000, 0.3556, 0.0000, 0.0204)T

Y ∗ =(0.0014, 0.0000, 0.4691, 0.0000, 0.0000, 0.0038, 0.5256, 0.0000, 0.0000)T .

One can see that the first responder can choose from nodes 1, 4, 7, and 9 as its initial position, and

the adversary can choose from nodes 1, 3, 6, and 7 as its attacking position. The game value for this

initial position game is -5.1602. This means that the expected reward for the first responder is negative,

so the first responder needs to improve the probability of detection or deploy more personnel to perform

the search.

Note that this game value is calculated based on the forecast occupancy levels without any correction.

To calculate the actual expected reward of the first responder under strategy (X∗, Y ∗), the actual occu-

pancy levels O in equation (16) are used. Both the updated and non-updated patrol sequences are given

in equation (16). The actual expected reward obtained under updated patrol sequence is −3.2757, while

it is −5.6281 when updates are not available. Clearly, the updated patrol sequence is better. However,

this is not always the case; there exist some cases in which updated sequences generate less expected

reward than non-updated sequences. Generally speaking, when people flow experiences unusual shocks,

such as sudden influx or outflux of people, the updated patrol sequence will work much better.

On the other hand, if the first responder improves the detection probability to 1 for all nodes,

the actual expected rewards for non-updated and updated patrol sequences become 3.8816 and 3.9608,
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respectively. Updated patrol sequences generate slightly better reward for the first responder in this case

too. They both are much better than the original case with lower detection probabilities. Of course, in this

case, non-updated and updated patrol sequences, and the mixed strategy for the initial position (X∗, Y ∗),

will all be different from the original case.

VI. DISCUSSION AND FUTURE RESEARCH

In this paper, we have considered static and dynamic game models for the infrastructure security

problem. In these models, rewards and costs are based upon the occupancy level at each location in

the infrastructure. Our models can be used in obtaining real time strategies for infrastructure security

personnel.

For the static game, we have proved certain properties of the equilibrium. While for the dynamic

game in which the first responder is mobile we have presented a solution methodology that is based on

the POMDP model. Throughout, examples have been provided.

Next, we plan to study the two-controller resource allocation problem in which a number of sites

(targets) are attacked by the adversary and are defended by the first responders. Depending on the players’

objectives, such a problem can be modeled as a zero-sum stochastic game [79], [80], [81], [82], or a

Nash game [83]. Our planned approach is to consider discrete and known environment, and incorporate

risk measures into the objective function.
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APPENDIX A

THEOREM AND PROOF

Theorem 1 (a) The game has the unique equilibrium (x∗,y∗) for v∗ 6= −Ok where k ∈ {1, . . . , N} is

such that

ϕk ≤ 1 < ϕk+1 (18)

where {ϕi} is strictly increasing sequence given by

ϕi =

i∑
j=1

Oj −Oi

djOj
, i ∈ {1, . . . , N} (19)

and ϕN+1 =∞ and

x∗i =



1/(diOi)
k∑

j=1

1/(djOj)

1−
k∑

j=1

Oj −Oi

djOj

 , i ≤ k,

0, i ≥ k + 1,

(20)

and

y∗i =



1/(diOi)
k∑

j=1

1/(djOj)

, i ≤ k,

0, i ≥ k + 1.

(21)

The value of the game is given by

v∗ =
1−

∑k
j=1 1/dj∑k

j=1 1/(djOj)
. (22)

(b) If v∗ = −Ok then −Ok is the value of the game. The first responder has the unique equilibrium

strategy

x∗i =
1

di

[
1− Ok

Oi

]
+

, i ∈ {1, . . . N}; (23)
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meanwhile the adversary has continuum equilibrium strategies

y∗i =



ε
diOi

i ≤ k − 1,

1− ε
∑k−1

j=1
1

djOj
, i = k,

0, i ≥ k + 1,

(24)

for any

ε ∈

 1
k∑

j=1
(1/(djOj))

,
1

k−1∑
j=1

(1/(djOj))

 .
Proof: We know that the equilibrium strategies for this zero-sum game is given by the optimum solution,

(x∗,y∗), to the following primal and dual problem pair:

(P ) max v (D) min w (25)

s.t. RTx ≥ v, (y) s.t. Ry ≤ w, (x) (26)

N∑
i=1

xi = 1, (w)

N∑
j=1

yj = 1, (v) (27)

x ≥ 0. y ≥ 0. (28)

(a) If y∗i > 0, then RT (i, ·)x∗i = v∗ 6= Ok, where, RT (i, ·) = R(·, i)T . This implies,

−Oi + djOix
∗
i = v∗, (29)

giving x∗i = Oi+v∗

diOi
. The normalization equation (27) gives the value of the game (22) for some k ∈

1, 2, . . . , N . Substituting v∗ value in (29) provides the optimal policy for the first responder as given

in (20). Note that under assumption (3) the following holds1−
k∑

j=1

Oj −Oi

djOj

 ≥
1−

k∑
j=1

Oj −Ok

djOj

 , i ≤ k, (30)

and the right hand side parenthesis is decreasing with respect to k. Thus, the value of k is constructed
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from the non-negativity of x∗i ’s for i ≤ k in equations (20) and (30).

If x∗i > 0, then by complementary slackness, R(i, ·)y∗ = w∗, where R(i, ·) is the ith row of R matrix.

This implies,

N∑
j=1

Ojy
∗
j − diOiy

∗
i = w∗ = v∗,

hence, gives the equilibrium strategy of the adversary as equation (21).

(b) Note that v∗ = −Ok implies
k∑

j=1

Oj −Ok

djOj
= 1,

in turn implies

1−
k∑

j=1

1

dj
= −Ok

k∑
j=1

1

djOj
,

when used in (20) gives the result (23). The primal problem is degenerate with xk = 0, hence the dual

problem has alternate equilibria given by (24).
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[69] H.Klüpfel and T. Meyer-König, “Models for crowd movement and egress simulation,” in Traffic and Granular

Flow ’03, S. H. et. al., Ed. Berlin: Springer, 2004, pp. 357–372. [Online]. Available: http://traffgo-

ht.com/downloads/pedestrians/downloads/publications/Kluepfel2004.pdf

[70] H. Klüpfel and T. Meyer-König, “Simulation of the evacuation of a football stadium,” in Traffic and

Granular Flow ’03, S. H. et. al., Ed. Berlin: Springer, 2004, pp. 423–430. [Online]. Available: http://traffgo-

ht.com/downloads/pedestrians/downloads/publications/Kluepfel2004a.pdf

[71] K. Deng, W. Chen, P. G. Mehta, and S. Meyn, “Resource pooling for optimal evacuation of a large building,” in Proceedings

of the 47th IEEE Conference on Decision and Control, 2008.

[72] S. Meyn, A. Surana, Y. Lin, and S. Narayanan, “Anomaly detection using projective Markov models in a distributed sensor

network,” in Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese Control

Conference, 2009, pp. 4662–4669.

[73] R. Tomastik, S. Narayanan, A. Banaszuk, and S. Meyn, “Model-based real-time estimation of building occupancy during

emergency egress,” Pedestrian and Evacuation Dynamics, pp. 215–224, 2010.

[74] D. Bauer, S. Seer, and N. Brandle, “Macroscopic pedestrian flow simulation for designing crowd control measures in public

transport after special events,” in Proceedings of the Summer Computer Simulation Conference, 2007, pp. 1035–1042.

[75] R. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, pp. 35–45,

1960.

[76] ——, “Canonical structure of linear dynamical systems,” Proceedings of the National Academy of Sciences, vol. 3, pp.

596–600, 1962.

29



Infrastructure Security Games Baykal-Gürsoy et al.

[77] R. Kalman and R. Bucy, “New results in linear filtering and prediction theory,” Trans. ASME J. Basic Eng., pp. 83–95,

1961.

[78] K. Gürsoy and M. Baykal-Gürsoy, “Forecasting: State-space models and Kalman filter estimation,” in Wiley Encyclopedia

of Operations Research and Management Sciences, 2010.

[79] M. Baykal-Gürsoy, “A sample-path approach to stochastic games,” in Proceedings of the IEEE Conference on Decision

and Control, 1989.

[80] ——, “Two-person zero-sum stochastic games,” Annals of Operations Research, vol. 28, pp. 135–152, 1991.

[81] M. Z. Avsar and M. Baykal-Gürsoy, “A note on two-person zero-sum communicating games,” Operations Research Letters,

vol. 34:4, pp. 412–420, 2006.

[82] ——, “A decomposition approach for undiscounted two-person zero-sum games,” Mathematical Methods in Operational

Research, vol. 49, pp. 483–500, 1999.

[83] ——, “Inventory control under substitutable demand: A stochastic game application,” Naval Research Logistics, vol. 49,

pp. 359–375, 2002.

[84] L. S. Shapley, “Stochastic games,” in Proc. Of the National Academy of Sciences Vol. 39, 1953, pp. 1095–1100.

30


