
Computers & Industrial Engineering 90 (2015) 352–360
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
How to deal with an intelligent adversaryq
http://dx.doi.org/10.1016/j.cie.2015.10.001
0360-8352/� 2015 Elsevier Ltd. All rights reserved.

q This material is based upon work supported by the National Science Foundation
under Grant Numbers CMMI-1436288 and CMMI-1435778.
⇑ Corresponding author at: WINLAB, Rutgers University, North Brunswick, NJ

08901, USA.
E-mail addresses: garnaev@yahoo.com (A. Garnaev), gursoy@rci.rutgers.edu

(M. Baykal-Gursoy), poor@princeton.edu (H. Vincent Poor).
Andrey Garnaev a,b,⇑, Melike Baykal-Gursoy c,d, H. Vincent Poor e

aWINLAB, Rutgers University, North Brunswick, NJ 08901, USA
bDepartment of Computer Modelling and Multiprocessor Systems, Saint Petersburg State University, St. Petersburg 198504, Russia
cDepartment of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854-8018, USA
dCenter for Advanced Infrastructure and Transportation, Rutgers University, Piscataway, NJ 08854-8018, USA
eDepartment of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

a r t i c l e i n f o
Article history:
Received 3 May 2015
Received in revised form 29 August 2015
Accepted 6 October 2015
Available online 10 November 2015

Keywords:
Network protection
Equilibrium
Bayesian game
a b s t r a c t

Traditionally, the design of network protection strategies is based on the answers of a protector and an
adversary to the question ‘‘How?”: how should the protector allocate its protection resources, and how
should the adversary allocate its attacking resources? This paper considers a more sophisticated adver-
sary, who, planning its malicious activities, considers two questions: ‘‘What for?” and ‘‘How?”.
Namely, what is the motivation for the attack? and how to attack based on the chosen motivation? To
study this problem, a simple game-theoretic network protection model is considered, in which the adver-
sary decides whether to intrude on the network to inflict maximal damage or to perform a reconnais-
sance mission, and based on this decision an intrusion strategy is designed. The solution to this game
shows that such an adversary may try a feint to draw the protector’s efforts away from the nodes that
the adversary intends to attack. Taking into account this feature of the adversary’s behavior allows
improvements in the reliability of a protection strategy.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction trillion-dollars investments (see, Mueller & Stewart, 2011), the
Computer networks have come to serve a critical societal role,
but this has created a new type of terrorism, namely, cyber-
terrorism. So many critical activities, such as commerce, finance,
energy, education and health care are online, that gaining control
of or disrupting such online systems, by Rainie, Anderson, and
Connolly (2014), can sow panic, cause damage or even lead to loss
of life. For example, by Magnuson (2014), cyber-attacks on electric
utilities can be devastating, since ‘‘taking down an electric grid,
especially one that serves a major city, could do real damage to
the economy and may indirectly cost lives”. Testifying to the House
of Representatives Intelligence Committee on cyber threats, Admi-
ral Rogers (see, Zengerle, 2014) said that a few countries have the
ability to invade and possibly shut down computer systems of U.S.
power utilities, aviation networks and financial companies, and
these capabilities can be used by nation-states, groups or individ-
uals to take down these critical activities. Cyber threats are only
one of the challenges homeland security has to meet. Despite
resources are still inadequate to respond to an increasing number
of old and new threats as adversaries (criminals or terrorists) cre-
ate new non-trivial methods of attack. For this reason, the National
Research Council (see, NRC, 2008) has emphasized the importance
of modeling terrorists as intelligent adversaries, and has proposed
three possible techniques to assess the impact of an intelligent
adversary, one of which is game-theoretic modeling. The problem
of security involves many different aspects, see, for example, a
recent review of Hausken and Levitin (2012), where 129 published
research papers on different aspects of security were classified
according to the system structure, defense measures, attack tactics
and circumstances involved.

Numerous researchers have used game theory to study
resource-allocation decisions for network protection, see for exam-
ple, Manshaei, Zhu, Alpcan, Basar, and Hubaux (2013), Guikema
(2009) and Baykal-Gursoy, Duan, Poor, and Garnaev (2014) that
provide references of research contributions that analyze and solve
security problems in networks via game-theoretic approaches. In
these works, the main setting is one in which the protector and
the adversary seek answers to the same question, ‘‘How?” Namely,
how to best allocate protection resources? how to best allocate
attacking resources? In this paper we examine network protection
from a different point of view, and, consider a more sophisticated
adversary, who plans an attack or an intrusion by asking two ques-
tions: ‘‘What for?” and ‘‘How?”. Namely, what is the motivation for
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intruding on the network? and how to intrude based on the chosen
motivation? Of course, answers to these questions might lead to
completely different adversarial behavior, than answering only
the question ‘‘How?”

Admiral Rogers (see, Zengerle, 2014), in his testimony, pointed
out that in addition to some countries already having the ability to
shut down valuable U.S. computer systems, some digital attackers
have also been able to penetrate such systems and perform ‘‘recon-
naissance” missions to determine how the networks are put
together. Such adversaries, planning their intrusions, had to
answer the question: What is the purpose of the intrusion: to shut
down the system or to perform ‘‘reconnaissance”?, and then to act
according to the answer.

As an example of other purposes for intrusion, see Levitin,
Hausken, Taboada, and Coit (2012), where a problem to store infor-
mation securely if an adversary may steal or destroy the informa-
tion was considered. Non-dominated solutions to this information
security problem were found based on a multiple objective genetic
algorithm.

To gain insight into this type of situation, we suggest a simple
game, in which an adversary can intrude on a network to corrupt
its nodes, and design its intrusion plan based on the chosen moti-
vation. We consider two basic motivations: (a) to inflict maximal
damage, and (b) to perform reconnaissance. Note that, in
Garnaev, Baykal-Gursoy, and Poor (2014), it was shown, that a pro-
tection strategy may depend essentially on the type of attack, and
incorporating a priori knowledge of the attack’s type, which is fixed
but unknown to the protector, increases defense efficiency. In this
paper, we extend this approach by allowing the adversary to be
more sophisticated and skillful in designing the intrusion, namely,
allowing the adversary to choose consciously its motivation for
intrusion, and to optimize its intrusion accordingly. This allows
us to incorporate a human factor into the adversary’s strategy.

The main contributions of this paper are the following:

(a) Developing a game-theoretic resource allocation model for
inflicting a maximal damage attack on a network and for
an intrusion attack into network to perform a reconnais-
sance mission.

(b) Incorporating a human factor into the adversary’s behavior
allowing him to choose consciously one of the types of
attack.

(c) Showing the difference in the principles that the intrusion
strategy and the detection strategy have to be based on in
order to be optimal. Namely, the intrusion strategy has to
be based on a tactical decision making approach allowing
sudden switching between strategies. Meanwhile, the pro-
tection strategy has to be based on a strategic decision mak-
ing approach incorporating the possibility of such tactical
adversary’s decision making by a proper allocation of protec-
tion resources in advance.

The organization of this paper is as follows: in Section 2 and its
four subsections, we first model two types of attack on a network
by means of resource allocation games. In both games the type of
attack is fixed, and known to the rivals. In Section 3 and its two
subsections, we extend the model to allow for a sophisticated
adversary to choose the type (motivation) of intrusion. In Section 4,
discussions and conclusions are offered. In the appendix, the proofs
of the obtained results are supplied.

2. Two types of attack

In this section and its four subsections, we describe two game-
theoretic models describing two types of attack on a network: to
inflict maximal damage and to perform a reconnaissance mission.
2.1. Strategies

The game is played on a network. Here we have in mind a com-
puter or communication network consisting of N nodes. It is an
abstract network composed of communication links and nodes
that may contain data that need to be protected. As such, the net-
work does not correspond to any specific topology. In the network
two agents (players, rivals) are present. An agent who wants to
minimize the effects of an attack is called the protector (say, it
can be an intrusion detection system (IDS)). An agent who wants
to intrude the network is called the adversary. We assume that
each game is played in one time slot with a total duration Y, during
which the intrusion has to be detected. If it is not detected, it could
yield some serious consequences, say, loss of valuable data, or loss
in the network’s security due to successful ‘‘reconnaissance”. Dur-
ing the time slot the adversary might intrude a single node, i.e., an
adversary’s strategy is a vector x ¼ ðx1; . . . ; xNÞ, where xi is the
probability that the adversary intrudes node i, and

PN
i¼1xi ¼ 1.

The protector has a more sophisticated strategy, namely, during
the time slot, the protector can switch from one node to another
to scan. Thus, its strategy corresponds to the amount of time it
has to spend scanning each selected node, i.e., a protector’s strat-
egy is a vector y ¼ ðy1; . . . ; yNÞ, where yi is the scanning time of

node i, and
PN

i¼1yi ¼ Y .

2.2. Value of node and detection probability

Each node of the network is characterized by a value Ci (say, the
amount of stored valuable data). We assume that the damage to
node i equals to the value of the stolen data, and that all data
stored in the corrupted node can be stolen, if the scanning failed.
We consider only the direct cost of an attack including data loss,
or financial losses caused. In addition to the direct cost, as sug-
gested by Kumar and Liu (2014), indirect losses might arise, and
they could be significantly higher than direct losses, since a suc-
cessful attack could impact negatively on consumer behavior and
investor confidence.

For simplicity we assume that the probability of not detecting
the adversary depends exponentially on the scanning time,
namely, it is expð�kiyiÞ, if node i is corrupted, with ki as a scanning
characteristic of node i. Thus, detection probability is
1� expð�kiyiÞ. See, also Stone (2007), Iida, Hohzaki, and Sato
(1994), Sakaguchi (1973), Lewis (2009), Baston and Garnaev
(2000), Garnaev and Trappe (2014), as examples of using exponen-
tial dependence in network protection games.

2.3. Game with the maximal damage attack

In this section, we consider the scenario in which the
adversary intrudes on the network to inflict maximal damage.
The payoff to the adversary is the total expected damage
this can cause, i.e., vD

A ðx; yÞ ¼
PN

i¼1Cixi expð�kiyiÞ. The payoff
to the protector is vD

P ðx; yÞ ¼ �vD
A ðx; yÞ. Thus, this is a

zero-sum game (see, Fudenberg & Tirole, 1991). We assume
that the rivals know the nodes’ values Ci, the scanning char-
acteristics ki for every node i, and the duration of the time
slot Y. Recall that ðx�; y�Þ is an equilibrium (saddle point)
of such a game if and only if vD

A ðx; y�Þ 6 vD
A ðx�; y�Þ 6 vD

A ðx�; yÞ
for any ðx; yÞ.

For the sake of simplicity, we assume that all nodes have differ-
ent values, i.e., Ci – Cj for i – j, and without loss of generality, we
can assume that the nodes are arranged by their values in decreas-
ing order

C1 > C2 > � � � > CN: ð1Þ
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Theorem 1. The value of the game with a maximal damage attack is
given as follows:

�vD
A ¼ exp

PkD
j¼1ðlnðCjÞ=kjÞ � YPkD

j¼1ð1=kjÞ

 !
; ð2Þ

where kD 2 ½1;N� is such that

ukD
6 Y < ukDþ1; ð3Þ

with fuig is strictly increasing on i such that

ui ¼
Xi

j¼1

lnðCj=CiÞ=kj
� �

; i 2 ½1;N�; ð4Þ

and uNþ1 ¼ 1.
The adversary has a unique strategy given as follows:

�yDi ¼
1=kiPkD
j¼1

ð1=kjÞ
Y þ

XkD
j¼1

lnðCi=CjÞ
kj

 !
; i 6 kD;

0; i P kD þ 1:

8>><
>>: ð5Þ

If �vD
A – eCkD then the protector has a unique equilibrium strategy

given by

�xDi ¼
1=kiPkD
j¼1

ð1=kjÞ
; i 6 kD;

0; i P kD þ 1:

8<
: ð6Þ

If �vD
A ¼ eCkD then the protector has a continuum of equilibrium

strategies given by

�xDi ¼

x
kiCkD

; i 6 kD � 1;

1� x
CkD

XkD�1

j¼1

1
kj
; i ¼ kD;

0; i P kD þ 1;

8>>>>><
>>>>>:

ð7Þ

for any CkD=
PkD

i¼1ð1=kiÞ 6 x 6 CkD=
PkD�1

i¼1 ð1=kiÞ.
Of course, all of these equilibrium strategies are equivalent, since

they all return the same payoff.
2.4. Game with a reconnaissance mission

In this scenario, the adversary wants to invade the network
for reconnaissance purposes. Here we assume that the purpose of
the reconnaissance mission for the adversary should be to
check the possibility of safe infiltration into the network. Thus,
his payoff is proportional to the probability of being undetected.
A proportionality coefficient C can be considered as the value of
the reconnaissance mission. So, the payoff to the adversary is

vR
Aðx; yÞ ¼ C

PN
i¼1xi expð�kiyiÞ. The protector wants to minimize

the adversary’s payoff. Hence, its payoff is vR
Pðx; yÞ ¼ �vR

Aðx; yÞ,
and this is again a zero-sum game. We assume that the rivals know
the value of reconnaissance mission C, scanning characteristics ki
and time slot duration Y.

Theorem 2. The value of the game with a reconnaissance mission is

�vR
A ¼ C exp �Y=

PN
j¼1ð1=kjÞ

� �
, and it has a unique saddle point

ð�xR; �yRÞ, where

�xRi ¼ 1=
XN
j¼1

ðki=kjÞ; �yRi ¼ Y=
XN
j¼1

ðki=kjÞ for i 2 ½1;N�:

Thus, in the reconnaissance intrusion all nodes always might be under
attack, and so, all of them have to be under protection.
3. The adversary can select attack’s type

Next, we extend the above discussed games for more sophisti-
cated adversary who can choose the type (motivation) of intrusion,
and attack accordingly.

3.1. Game with predesigned strategies

In this section, we assume that each of the rivals have two pre-
designed strategies for effort allocation. Namely, the adversary has
two equilibrium strategies for intrusion (�xD and �xR) motivated by
the two basic games depending on what type of intrusion he
intends to apply to. Thus, applying intrusion strategy �xD means
that the adversary performs maximal damage intrusion, and �xR

means reconnaissance intrusion. The protector also has two strate-
gies of scanning to respond (�yD and �yR). Applying scanning efforts
�yD means that the protector expects maximal damage intrusion,
and �yR means that it expects reconnaissance intrusion. Thus, here
we assume that the maximal damage strategy and reconnaissance
strategy are mutually exclusive, and thus cannot be used simulta-
neously. Which of these predesigned strategies should be chosen if
each of the rivals does not know the choice of the other? To answer
this question we consider the following zero-sum 2� 2 matrix
game, in which rows correspond to the adversary’s strategies and
columns to the protector’s strategies:

ð8Þ

Let c ¼ ðc;1� cÞ and d ¼ ðd;1� dÞ be mixed strategies for the
adversary and the protector, respectively, i.e. the adversary employs
pure strategies �xD and �xR with probabilities c and 1� c, and the pro-
tector employs pure strategies �yD and �yR with probabilities d and
1� d. Then, the expected payoff to the adversary is given by

vðc; dÞ :¼ �vD
Acdþ vD

A ð�xD; �yRÞcð1� dÞ þ vR
Að�xR; �yDÞð1� cÞd

þ �vR
Að1� cÞð1� dÞ:

We are looking for equilibrium strategies, i.e., for such ðc�; d�Þ
that for any ðc; dÞ the following inequalities hold: vðc; d�Þ 6
vðc�; d�Þ 6 vðc; d�Þ.

Let us introduce the following auxiliary notations:

a11 :¼ �vD
A ; a22 :¼ �vR

A

C
¼ exp �Y

XN
j¼1

,
ð1=kjÞ

 !
;

a12 :¼ vD
A ð�xD; �yRÞ ¼

PkD
j¼1ðCj=kjÞPkD
j¼1ð1=kjÞ

exp �Y
XN
j¼1

,
ð1=kjÞ

 !
;

a21 :¼ vR
Að�xR; �yDÞ

C
¼
PkD

j¼1ð�vD=ðkjCjÞÞ þ
PN

j¼kDþ1ð1=kjÞPN
j¼1ð1=kjÞ

;

where aij does not depend on C. Using this notation the matrix game
has the following form:

ð9Þ

Since vR
Að�x; �yÞ and vD

A ð�x; �yÞ are strictly convex in �y, and ð�xD; �yDÞ and
ð�xR; �yRÞ are saddle points of the corresponding games we have that

a11 < a12 and a22 < a21: ð10Þ
By (10), a11=a21 < a12=a22. Thus, the inequalities a11 > Ca21 and
Ca22 > a12 cannot hold simultaneously for any enough small open
interval of C. Thus, the following theorem holds.
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Theorem 3. The considered game has a unique equilibrium if
C R fa11=a21; a12=a22g.
(a) If a12=a22 < C then ð�xR; �yRÞ is the unique equilibrium in pure
strategies.

(b) If C < a11=a21 then ð�xD; �yDÞ is the unique equilibrium in pure
strategies.

(c) If a11=a21 < C < a12=a22 then ðc; dÞ :¼ ðcðCÞ; dðCÞÞ is the unique
equilibrium in mixed strategies, and v :¼ vðCÞ is the value of
the game given as follows:
Fig. 1.
a11 ¼ 1:
cðCÞ ¼ Cða21 � a22Þ
Cða21 � a22Þ þ a12 � a11

;

dðCÞ ¼ a12 � Ca22

Cða21 � a22Þ þ a12 � a11
;

vðCÞ ¼ Cða21a21 � a11a22Þ
Cða21 � a22Þ þ a12 � a11

:

ð11Þ

If C ¼ a11=a21 then two equilibria given by (b) and (c) arise. If
C ¼ a12=a22 then two equilibria given by (a) and (c) arise.
The pure equilibrium is ð�xR; �yRÞ for large C, and it is ð�xD; �yDÞ for
small C. Meanwhile for intermediate C the adversary tries to defeat
the protector by diverting its scanning effort from more to less
dangerous intrusion. Note that cðCÞ ¼ 1 for C " a11=a21, and
cðCÞ ¼ a21�a22

ða12=a11Þa21�a22
< 1 for C # a11=a21. Thus, the probability of

using maximal damage intrusion drops down at C ¼ a11=a21. This
forces the protector to pay more attention to the possibility of
reconnaissance intrusion, which was negligible before, and so the
probability of using scanning efforts versus such intrusion mono-
tonically increases with increasing C. Common sense may predict
the increasing preference of the adversary for a reconnaissance
intrusion. However, as it is shown, the adversary, instead, again
increases preference for the maximal damage intrusion, while
the protector keeps on increasing its expectation of reconnaissance
intrusion. Finally, when the reconnaissance intrusion becomes
unbeatably valuable, the adversary again switches to using only
this intrusion. In spite of these jumps in the adversary’s policy,
the value of the game continuously increases in C (Fig. 1).

3.2. Game with flexible resource allocation response

In this section we describe a bi-level decision making scheme of
the adversary with flexible resource allocation responses. Note
that, bi-level decision making schemes are widely used in network
security problems. See, for example, Konak, Kulturel-Konak, and
Probabilities c; d, and the value of the game v as functions on C for
5; a12 ¼ 2; a21 ¼ 1; a22 ¼ 0:5.
Snyder (2015) for the reliable server assignment problem under
attacks, and Tambe, Jiang, An, and Jain (2012) for infrastructure
security problems.

In the first step, the probability c of intrusion to maximize dam-
age is fixed and known to both rivals. A strategy of the adversary is
ðxD; xRÞ, where xD and xR are strategies for intrusion to maximize
damage and to perform reconnaissance. The payoff to the adver-
sary is vAððxD; xRÞ; yÞ ¼ cvD

A ðxD; yÞ þ ð1� cÞvR
AðxR; yÞ. In this step

the rivals choose the strategies ðxDðcÞ; xRðcÞÞ and yðcÞ as an equilib-
rium to the zero-sum game with payoff to the adversary vA. Since,
all the equilibrium strategies in a zero-sum game are equivalent to
each other (they return the same payoffs), we will not focus spe-
cially on the problem of uniqueness of the equilibrium in the first
step. Note that, the game, played in the first step for a fixed c, is
Bayesian. Bayesian games have been widely employed in dealing
with different problems in networks, for example, Liu,
Comaniciu, and Mani (2006), Agah, Das, Basu, and Asadi (2007)
for intrusion detection, Garnaev and Trappe (2015) for spectrum
coexistence, Garnaev, Trappe, and Kung (2012), Garnaev, Trappe,
and Kung (2013) for scanning bandwidth, Li and Wu (2008) for
malicious activity in mobile ad hoc networks, and Ren, Mo, and
Shi (2014) for Denial of Service (DoS) attacks.

In the second step, the adversary finds c to maximize his payoff,
i.e., c ¼ argc maxvAððxDðcÞ; xRðcÞÞ; yðcÞÞ.

To formulate the main result (Theorem 4) we first formulate
two auxiliary lemmas, where also auxiliary notation is introduced.

Lemma 1. The inequality

wkDþ1 6
�vDðcÞ

ð1� cÞC ð12Þ

is equivalent to

c P c�; ð13Þ
where c� 2 ð0;1Þ is the unique root of the equation

�vDðcÞ
ð1� cÞC ¼ wkDþ1 ð14Þ

with

�vDðcÞ ¼ exp

PkD
j¼1ðlnðcCjÞ=kjÞ � YPkD

j¼1ð1=kjÞ

 !
; ð15Þ

and

wm ¼
Pm�1

j¼1 ð1=kjÞPN
j¼mð1=kjÞ

for m 2 ½1;N�; ð16Þ

with w1 ¼ 0;wNþ1 ¼ 1.
Lemma 2. Let

wkDþ1 >
�vDðcÞ

ð1� cÞC : ð17Þ

Then

(a) There exists a unique integer tc 2 ½1;N� such that either
wtc 6
cCtc

ð1� cÞC 6 wtcþ1 ð18Þ

or

cCtcþ1

ð1� cÞC < wtcþ1 <
cCtc

ð1� cÞC : ð19Þ
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(b) Also,
tc
¼ kD; if ð19Þ holds;
< kD; if ð18Þ holds:

�
ð20Þ
(c) In particular, if (17) holds then tc 6 kD.
(d) If tc ¼ kD then
c� < c < cþ; ð21Þ
where

c� ¼ CwkDþ1

CwkDþ1 þ CkD

and cþ ¼ CwkDþ1

CwkDþ1 þ CkDþ1
: ð22Þ
Using these auxiliary lemmas and notation we can formulate
the main result of this section.

Theorem 4. In the first step, for a fixed c the game with flexible
resource allocation responses has an equilibrium ððxDðcÞ; xRðcÞÞ; yðcÞÞ,
and the value vAðcÞ are given in the following three cases.

(a) For c ¼ 1 the equilibrium strategies and the value of the
game are ððxDðcÞ; xRðcÞÞ; yðcÞÞ ¼ ðð�xD; xRÞ; �yDÞ and vAðcÞ ¼ �vD

A ,
where xR is any probability vector and �xD; �yD and �vD

A are
given by Theorem 1.

(b) For c ¼ 0 the equilibrium strategies and the value of the
game are ððxDðcÞ; xRðcÞÞ; yðcÞÞ ¼ ððxD; �xRÞ; �yRÞ and vAðcÞ ¼ �vR

A,
where xD is any probability vector and �xR; �yR and �vR

A are given
by Theorem 2.

(c) For c 2 ð0;1Þ the equilibrium strategies and the value of the
game are specified by three subcases (ci)–(ciii).

(ci) Let
c P c�: ð23Þ
Then the equilibrium strategies and the value of the game are
given as follows:

xDðcÞ ¼ �xD; ð24Þ

xRi ðcÞ ¼
0; i 6 kD;

1=kiPN

j¼kDþ1
ð1=kjÞ

; i > kD;

8<
: ð25Þ

yðcÞ ¼ �yD; ð26Þ
and

vAðcÞ ¼ �vDðcÞ þ ð1� cÞC: ð27Þ

(cii) Let
Fig. 2. Dependence of subcases c , c and c on c.
c < c� and c R ðc�; cþÞ: ð28Þ
Then, tc < kD. The equilibrium strategies and the value of the
game are given as follows

xDi ðcÞ ¼

1=kiPN

j¼1
ð1=kjÞ

1þ ð1�cÞC
cCtc

� �
; i < tc;

1� 1þ ð1�cÞC
cCtc

� �Ptc�1

j¼1
ð1=kjÞPN

j¼1
ð1=kjÞ

; i ¼ tc;

0; i > tc;

8>>>>>><
>>>>>>:

ð29Þ

xRi ðcÞ ¼

0; i < tc;

1� 1þ cCtc
ð1�cÞC

� �PN

j¼tcþ1
ð1=kjÞPN

j¼1
ð1=kjÞ

; i ¼ tc;

1=kiPN

j¼1
kj

1þ cCtc
ð1�cÞC

� �
; i > tc;

8>>>>>>><
>>>>>>>:

ð30Þ
yiðcÞ ¼

Yþ
Ptc

j¼1
ð1=kjÞ lnðCi=CjÞPtc
j¼1

ð1=kjÞ
; i 6 tc;

Yþ
Ptc

j¼1
ð1=kjÞ lnðCtc =CjÞPtc
j¼1

ð1=kjÞ
; i > tc

8>>>><
>>>>:

ð31Þ

and

vAðcÞ ¼ ðð1� cÞC þ cCtc Þ exp
Ptc

i¼1
ln Ci=Ctcð Þ

ki
� YPN

i¼1ð1=kiÞ

0
@

1
A: ð32Þ
(ciii) Let
c < c� and c 2 ðc�; cþÞ: ð33Þ

Then, tc ¼ kD. The equilibrium strategies and the value of the
game are given as follows:

xDi ðcÞ ¼
1=kiPtc
j¼1

ð1=kjÞ
; i 6 tc;

0; i > tc;

8><
>: ð34Þ

xRi ðcÞ ¼
0; i 6 tc;

1=kiPN

j¼tcþ1
ð1=kjÞ

; t > tc;

8><
>: ð35Þ

yiðcÞ ¼

1
ki
ln

cCi

PN

j¼1
ð1=kjÞ

vAðcÞ
Ptc

j¼1
ð1=kjÞ

 !
; t 6 tc;

1
ki
ln

ð1�cÞC
PN

j¼1
ð1=kjÞ

vAðcÞ
PN

j¼tcþ1
ð1=kjÞ

 !
; i > tc;

8>>>>><
>>>>>:

ð36Þ

vAðcÞ ¼
XN
m¼1

ð1=kmÞ

� e

Ptc
j¼1

ln
cCjPtc
m¼1

1
km

 !
kj

þ
PN

j¼tcþ1

ln
ð1�cÞCPN

m¼tcþ1
1
km

 !
kj

�YPN

j¼1
ð1=kj Þ :

ð37Þ
In the second step, the adversary selects a c to maximize its payoff,
i.e., c� ¼ argmaxcvAðcÞ.

In particular, the theorem shows that the adversary’s equilib-
rium strategy has node sharing structure, i.e., some nodes are iden-
tified with a maximal damage attack while some nodes are
identified with a reconnaissance mission with overlapping inten-
tion of at most one node. Fig. 2 illustrates the dependence of sub-
cases ci, cii and ciii on c for the first step of the decision making
scheme of the adversary.

If c is large, namely, c > c�, then the adversary’s strategies do
not depend on c, and he applies the same strategy as if there were
no reconnaissance threat at all.

If c 2 ðc�; cþÞ then the adversary’s equilibrium strategies do not
overlap. The switching node as well as the adversary’s strategies do
not depend on c; meanwhile the protector’s strategy depends on c
continuously.
i ii iii



Fig. 3. Equilibrium probability c for the scenario with flexible resource allocation
strategies.

Fig. 4. The value of the game with flexible and predesigned resource allocation
strategies for Y ¼ 7.
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If c R ðc�; cþÞ; c < c�, then the adversary’s equilibrium
strategies share a node depending on c, and the adversary’s
equilibrium strategies are continuous in c; meanwhile the
protector’s strategy is a piecewise constant function of c. It is inter-
esting that this version of the game with flexible effort allocation
also retains the phenomenon of possible cheating, combining it
with straightforward behavior, which allows for an increase in
the payoff to the adversary. Figs. 3 and 4 illustrate this phe-
nomenon for N ¼ 9 nodes, and C ¼ ð7;6;5;4;3;1;0:7;0:5;0:2Þ,
k ¼ ð1;0:9;0:8;0:7;0:6; 0:5;0:4;0:3; 0:2Þ.

4. Conclusions

In this paper we have considered the incorporation in a network
protection strategy of an adversary who as a decision-maker can
choose the motivation of an attack: either to inflict maximal dam-
age or to perform reconnaissance. This turns the adversary into a
maxmaxmin decision-maker. This approach allows us to incorpo-
rate into the protection strategy the possibility that the adversary
may try to deceive the protector, and also to observe an essential
difference in designing the intrusion strategy by the adversary
and the protection strategy by the protector. Figs. 1 and 3 illustrate
that the adversary might make a sudden decision on the intrusion
strategy he is going to apply, which is reflected by piece-wise con-
tinuous structure of the optimal probability of choosing the
attack’s type. Also, allowing flexible resource allocation strategies
instead of predesigned ones yields an increasing number of such
sudden decisions. In other words, the adversary’s strategy might
be sensitive to the network’s parameters. Thus, the adversary
might be inclined to make tactical decisions in attack’s planning
assuming sudden switches between attack types. Fig. 4 illustrates
that for small or large value of the reconnaissance intrusion the
selection of the attack’s type is robust, while for intermediate such
values the attack’s type is not predetermined, and its selection is
performed by a random mechanism. To meet with this uncertainty
the protector has, in advance, to incorporate into its protection’s
strategy the possibility of such randomness in the adversary’s
behavior. Thus, the protector has to respond by planning the pro-
tection strategy to account for the tactical decision making
approach of the adversary. So, the protector has to take such a
strategic decision making approach as a basic principle for
designing the protection strategy. A goal of our future research
is to extend our approach to more sophisticated dynamic
intrusion and protection scenarios involving the possibility of
combining attack types based on the currently achieved result of
the attack.

Appendix A. Proof of Theorem 1

Strategies ðx; yÞ are equilibrium if and only if they are the best
response for each other, i.e., x ¼ BRAðyÞ ¼ argmaxxvD

A ðx; yÞ and
y ¼ BRPðxÞ ¼ argminyvD

A ðx; yÞ. Then, since vD
A is linear on x and con-

vex on y, strategies ðx; yÞ are equilibrium if and only if there are m
(the maximal coefficient of all xi) and x (a Lagrange multiplier)
such that

Cie�kiyi
¼ m; xi > 0;
6 m; xi ¼ 0;

�
ðA:1Þ

Cixikie�kiyi
¼ x; yi > 0;
6 x; yi ¼ 0:

�
ðA:2Þ

Then, (A.1) implies m > 0. Since there is at least one i such that
xi > 0, then (A.2) yields x > 0. Also, by (A.2), if xi ¼ 0 then yi ¼ 0.
Then, by (1) and (A.1), there exists a k such that

Ckþ1 < m 6 Ck with CNþ1 ¼ 0; ðA:3Þ
and

yi ¼
ln Ci=mð Þ=ki; i 6 k;

0; i > kþ 1:

�
ðA:4Þ

Summing up (A.4) we obtain that

Y ¼
Xk
i¼1

yi ¼
Xk
i¼1

ln Ci=mð Þ
ki

: ðA:5Þ

Thus,

lnðmÞ ¼
Xk
i¼1

ðlnðCiÞ=kiÞ � Y

 !, Xk
i¼1

ð1=kiÞ
 !

: ðA:6Þ

Substituting (A.6) into (A.3) implies the switching node k is defined
by:

lnðCkþ1Þ <
Pk

i¼1ðlnðCiÞ=kiÞ � YPk
i¼1ð1=kiÞ

6 lnðCkÞ:

This condition is equivalent to (3) withuk given by (4). Thus, k � kD,
and (5) follows.

Since vD
A is linear on x, then (A.1) implies that m is the value of

the game. Thus, (A.6) yields (2) with

�vD ¼ m: ðA:7Þ
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First note that, by (1), (A.1), (A.3) and (A.4), xi ¼ 0 for i P kD þ 1.
To find the equilibrium strategy x we have to consider sepa-

rately two cases: (a) �vD – CkD , and (b) �vD ¼ CkD .
(a) Let �vD – CkD . Then, by (A.4),

yi
> 0; i 6 kD;

¼ 0; i P kD þ 1:

�

Then, by (A.2) and (A.4), we have that

xi ¼
x=ðkimÞ; i 6 kD;
0; i P kD þ 1:

�

Since x is a probability vector, (6) follows.
(b) Let �vD ¼ CkD . Then by (A.4)

yi
> 0; i 6 kD � 1;
¼ 0; i P kD:

�

For x we still have xi > 0 for i 6 kD � 1, and we also have that
xkD P 0. Then, since m ¼ CkD , by (A.2) and (A.4), we have that

xi ¼
x=ðkiCkD Þ; i 6 kD � 1;
xkD ; i ¼ kD;

0; i P kD þ 1;

8><
>: ðA:8Þ

for any

0 6 xkD 6 x=ðkkDCkD Þ: ðA:9Þ

Since x is a probability vector, xkD ¼ 1�PkD�1
i¼1 xi. Then, by (A.8), the

inequalities (A.9) are equivalent to

CkD

XkD
i¼1

ð1=kiÞ
 !,

6 x 6 CkD

XkD�1

i¼1

ð1=kiÞ
 !,

;

and (7) follows.
Appendix B. Proof of Theorem 3

By (10), if a21C < a11, then strategy �xD dominates strategy �xR,
and if a12C > a22 then strategy �xR dominates strategy �xD for the
adversary, and (a) and (b) follow. For (c), by (10), there are no
saddle points in pure strategies. Thus, there is the unique mixed
equilibrium (for 2� 2 zero sum game it is an equalizing one),
and the result follows.
Appendix C. Proof of Lemma 1

It is clear that �vDðcÞ
ð1�cÞC is an increasing function from zero for c # 0

to infinity for c " 1, and the result follows.
Appendix D. Proof of Lemma 2

(a) Since wt is increasing from 0 for t ¼ 1 to infinity for t ¼ N þ 1
and Ct is decreasing from C1 > 0 for t ¼ 1 to 0 for t ¼ N þ 1, there
exists a unique t such that

cCt

ð1� cÞC P wt ðD:1Þ

and

cCtþ1

ð1� cÞC < wtþ1: ðD:2Þ

For such t one of the following inequalities must hold:either

cCt

ð1� cÞC 6 wtþ1 ðD:3Þ
or

cCt

ð1� cÞC > wtþ1: ðD:4Þ

Then, (D.1) and (D.3) imply (18). Also, (D.2) and (D.4) yield (19)
with tc ¼ t.

(b) Recall that by definition of kD we have that

XkD
j¼1

1
kj

ln
cCi

�vDðcÞ
� �

¼ Y ðD:5Þ

and

cCkDþ1 < �vDðcÞ 6 cCkD : ðD:6Þ
Then, by (17) and (D.6),

cCkDþ1

ð1� cÞC <
c�vDðcÞ
ð1� cÞC < wkDþ1: ðD:7Þ

So, only the following two subcases can hold:

cCkDþ1

ð1� cÞC <
�vDðcÞ

ð1� cÞC < wkDþ1 6 cCkD

ð1� cÞC ðD:8Þ

and

cCkDþ1

ð1� cÞC <
�vDðcÞ

ð1� cÞC 6 cCkD

ð1� cÞC < wkDþ1: ðD:9Þ

If (D.8) holds, then, by (19), kD ¼ tc. Meanwhile, since wi is increas-
ing, by (18), (D.9) implies that tc < kD.

(c) follows from (b).
(d) follows from (19) with tc ¼ kD.

Appendix E. Proof of Theorem 4

(a) and (b) are obvious.
(c) For a fixed c 2 ð0;1Þ; ððxDðcÞ; xRðcÞÞ; yðcÞÞ is an equilibrium if

and only if there are mD; mR (the maximal coefficients of all xi in
maximal damage and reconnaissance components of the adver-
sary’s payoff) andx (a Lagrange multiplier) such that the following
relations hold:

cCie�kiyi
¼ mD; xDi > 0;
6 mD; xDi ¼ 0;

(
ðE:1Þ

ð1� cÞCe�kiyi
¼ mR; xRi > 0;
6 mR; xRi ¼ 0

(
ðE:2Þ

and

cCixDi þ ð1� cÞCxRi
� �

kie�kiyi
¼ x; yi > 0;
6 x; yi ¼ 0:

�
ðE:3Þ

To find an equilibrium we consider separately two subcases that
can arise:

ðAÞ There exists an i such that yi ¼ 0; ðE:4Þ
ðBÞ yi > 0 for all i: ðE:5Þ

(A) Let (E.4) hold. We will find a necessary and sufficient condi-
tion for existence of such an equilibrium strategy of the adversary.
First note that (E.2) yields

xRj
P 0; yj ¼ 0;
¼ 0; yj > 0;

(
ðE:6Þ

and, (E.1) and (E.3) imply

xDj
> 0; yj > 0;
¼ 0; yj ¼ 0:

(
ðE:7Þ
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Thus, (E.1) and (E.3), following the proof of Theorem 1, imply that

xDðcÞ ¼ �xD; yðcÞ ¼ �yD; ðE:8Þ
and

cCkDþ1 < mD 6 cCkD ; ðE:9Þ
where mD equals to �vD from (2) with substitution of Ci by cCi. Thus,
mD ¼ �vDðcÞ given by (15). By (E.1), (E.3) and (E.8) we have that

x ¼ �vDðcÞPkD
j¼1ð1=kjÞ

: ðE:10Þ

Also, by (E.1), (E.3), (E.8) and (E.10), xR has to be any probability vec-
tor such that

xR ¼ 0 for i 6 kD ðE:11Þ
and

xRi 6 x=ki
ð1� cÞC ¼ �vDðcÞ

ð1� cÞC
1=kiPkD

j¼1ð1=kjÞ

¼ �vDðcÞ
ð1� cÞCwkDþ1

1=kiPN
j¼kDþ1ð1=kjÞ

for i > kD:
ðE:12Þ

Such a probability vector xR exists if and only if (14) holds. In par-
ticular, xR is given by (25) is a probability vector, and (ci) follows.

(B) Let (E.5) hold. We will find necessary and sufficient condi-
tions for such an equilibrium strategy, y, to exist. First note that,
by (1), there exists at most one t such that xRt > 0 and xDt > 0, since
if such a t exists, then (E.1) and (E.2) yield that

cCt

ð1� cÞC ¼ mD

mR
: ðE:13Þ

Also, (E.1) and (E.2) imply that

cCi

ð1� cÞC P
mD

mR
if xDi > 0; xRi ¼ 0 ðE:14Þ

and

cCi

ð1� cÞC 6 mD

mR
if xDi ¼ 0; xRi > 0: ðE:15Þ

Thus, for equilibrium strategies xD and xR the following conditions
have to hold:

xDi
> 0; i 6 t;

¼ 0; i > t

�
and xRi

¼ 0; i 6 t � 1;
> 0; i > t � 1

�
ðE:16Þ

or

xDi
> 0; i 6 t;
¼ 0; i > t;

�
and xRi

¼ 0; i 6 t;
> 0; i > t:

�
ðE:17Þ

We consider separately these two cases: (Bi) (E.16) holds, and (Bii)
(E.17) holds.

(Bi) Let (E.16) hold. Then by (E.1), (E.2) and (E.3) and the fact
that xD and xR are probability vectors we have that

xDi ¼

x=ðmDkiÞ; i 6 t � 1;

1�
Xt�1

j¼1

ðx=ðmDkjÞÞ; i ¼ t;

0; i P t þ 1;

8>>>>><
>>>>>:

xRi ¼

0; i 6 t � 1;

1�
XN
j¼tþ1

ðx=ðmRkjÞÞ; i ¼ t;

x=ðmRkiÞ; i P t þ 1

8>>>>><
>>>>>:

ðE:18Þ
and

yi ¼
ln cCi=mD
� �

=ki; i 6 t;
ln ð1� cÞC=mR� �

=ki; i P t þ 1:

(
ðE:19Þ

Also, by (E.1) and (E.18) we have that

mD < cCt: ðE:20Þ
Substituting (E.18) and (E.19) for i ¼ t into (E.3) implies that

x ¼ mD þ mRPN
j¼1ð1=kjÞ

: ðE:21Þ

Using (E.13) and (E.19) we can find that

x ¼ 1þ cCt=ðð1� cÞCÞPN
j¼1ð1=kjÞ

mR

¼ 1þ ð1� cÞC=ðcCtÞPN
j¼1ð1=kjÞ

mD:
ðE:22Þ

For positive mD; mR, and x, the vectors xD and xR given by (E.18) are
probability vectors if and only if

Xt�1

j¼1

1
kj

6 mD

x
and

XN
j¼tþ1

1
kj

6 mR

x
:

By (E.22), the last two inequalities are equivalent to (18) Thus,
t ¼ tc. By Lemma 2, tc < kD, and it follows that condition (28) of case
(cii) holds.

Substituting (E.13) into (E.19) and summing up these yi imply
that for the equilibrium y the following condition has to hold:

Xtc
i¼1

1
ki

ln
cCi

x
PN

j¼1ð1=kjÞ
1þ ð1� cÞC

cCtc

 ! !

þ
XN

i¼tcþ1

1
ki

ln
ð1� cÞC

x
PN

j¼1ð1=kjÞ
1þ cCtc

ð1� cÞC
� � !

¼ Y:

ðE:23Þ

The left-side of Eqn. (E.23) is defined for x 2 ð0; ðcCtc þ ð1� cÞCÞ=PN
j¼1ð1=kjÞ� and it is decreasing in x from infinity for x # 0 to utc

for x ¼ ðcCtc þ ð1� cÞCÞ=PN
j¼1ð1=kjÞ with um given by (3). Since

tc < kD; y is a positive vector, and (cii) follows.
(Bii) Let (E.17) hold. Then, by (E.14) and (E.15), we have that

cCtþ1

ð1� cÞC <
mD

mR
<

cCt

ð1� cÞC : ðE:24Þ

Also, (E.1), (E.2) and the fact that xD and xR are probability vectors
imply that

xDi ¼
x

kimD
; i 6 t;

0; i > t

(

xRi ¼
0; i 6 t;
x

kimR
; i > t

( ðE:25Þ

with

mD

x
¼
Xt
i¼1

1
ki

and
mR

x
¼
XN
i¼tþ1

1
ki
: ðE:26Þ

Substituting (E.26) into (E.24) implies that t is given by the
condition

cCtþ1

ð1� cÞC <

Pt
i¼1ð1=kiÞPN

i¼tþ1ð1=kiÞ
<

cCt

ð1� cÞC : ðE:27Þ

Since
Pt

i¼1
ð1=kiÞPN

i¼tþ1
ð1=kiÞ

¼ wtþ1, (E.27) is equivalent to (19). Thus, t ¼ tc.

Moreover, by Lemma 2; tc ¼ kD, and condition (33) of case (ciii)
holds.
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The strategy y has to be given by (E.19). Substituting (E.26) into
(E.19) yields that x has to satisfy the following equation:

Xtc
i¼1

1
ki

ln
cCi

x
Ptc

j¼1ð1=kjÞ

 !

þ
XN

i¼tcþ1

1
ki

ln
ð1� cÞC

x
PN

j¼tcþ1ð1=kjÞ

 !
¼ Y:

ðE:28Þ

The last equation has a root x 2 0;

PN

j¼tcþ1
ð1=kjÞ

ð1�cÞC

 !
if and only if the

following condition holds:

Xtc
i¼1

1
ki

ln
cCi

ð1� cÞCwtcþ1

 !
< Y :

Since tc ¼ kD, by (17), this inequality holds, and (ciii) follows.
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