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Abstract

Two-person zero-sum stochastic games with finite state
and action spaces are considered. The expected average
payoff criterion is used for multichain structures. In the
special case that only one player controls the transitions,
it is shown that the optimal stationary policies and the
value of the game can be obtained from the optimal solu-
tions to a pair of dual linear programs. A decomposition
algorithm is given which produces such optimal station-
ary policies for both players. In the case that both players
control the transitions, a generalized game is obtained, the
solution of which gives the optimal policies.

1 Introduction

In this paper we investigate the optimal policies for a two-person
zero-sum stochastic game (SG) that was first introduced by Shap-
ley [17]. The game is played sequentially. At each epoch, the game
is in one of finitely many states and each player observes the cur-
rent state and chooses one of finitely many actions. The state
of the game and the pair of actions determines:(i) a payoff to be
made by player II to player I; (i7) the probability distribution over
the states of the game, which provides the transition probabili-
ties to the next state of the game. Stochastic games generalize
Markov decision processes, in that MDPs may be viewed as SGs
in which one of the players has only one action in each state.

An objective function is defined depending on the evaluation
of the payoffs. In a game, player I tries to maximize its gain
while player II tries to minimize its loss. Shapley [17] considered
the game with discounted payoffs and proved that this game has
a value and that both players have optimal stationary policies.
Hoffman and Karp [10] studied the long-run average payoff crite-
rion and proved that the game has a value if the transition matrix
of each pure policy pair is irreducible. If R,, denotes the payoff
at epoch m € N}, then the long-run average expected payoff to
player I is defined as

.1 &
$(u,v) := liminf - Y Euyv[Ra),
m=1
where the expectation is taken with respect to each player’s policy.
The problem of which games have a value is solved by Mertens and
Neyman [14] who show that every stochastic game has a value,
ie.,
st‘xlp lef $(u,v) = "{.{ stlxlp (u,v).

The average expected payoff problem has also been studied by
other authors [1}, [5], [11]. In general, there do not exist optimal
policies for both players [3]. Bewley and Kohlberg [2] give suf-
ficient conditions for the existence of stationary optimal policies
for both players. They show that if SG is unichain or if only one
player controls the transitions, then there exists optimal station-
ary policies for both players. Kallenberg [12] study the case when
one player controls the transitions and give an algorithm to locate
the optimal stationary policies. This case has also been studied
by other authors [6],(7], 8], [9], [15].

We consider the ezpected average criterion (Bewley and Kohl
berg define it as limit average criterion [2]),

'CH2642-7/89/0000-0180$1.00© 1989 IEEE

n
$(,v) i= Buylimint = 3 Ral. )
m=1

Bewley and Kohlberg [2] prove that if there exist optimal sta-
tionary policies for the long-run average expected payoff criterion,
then these policies are optimal for the limit average criterion. In
this paper first, we show in the special case that only one player
controls the transitions that optimal stationary policies and the
value of the game can be obtained from optimal solutions of a
pair of dual linear programs. This problem is considered for mul-
tichain SGs. The decomposition approach is used in developing
the algorithm to locate optimal policies. For the general case
that both players control the transitions, we obtain a generalized
game. If a solution exists for this game we can locate optimal
stationary policies for both players in the unichain case.

Section 2 presents the stochastic game model with some nota-
tions and definitions. In scction 3 we study the case of one player
controlling the transitions and give a decomposition algorithm to
locate the optimal policies. In section 4 we discuss the games
with both players controlling the transitions.

2 Stochastic Game Model

Let {X,,} denote the state process of the two-person zero-sum
game, taking values from a finite state space S . After observing
the state of the game at epoch m each player chooses an action
from a finite set of actions. Let {A,} and {B,,} be the sequence
of actions taken by player I and player II, respectively. Let A and
B denote the sct of available actions for player I and II, respec-
tively.

Player II pays player I a payoff R, = r(Xn, Am, B,) at each
epoch m. At any epoch if the system is in state z € S, player
I choses action @ € A and player II choses action b € B, a
payoff of r(z,a,b) is earned. It is assumed that the payoffs are
nonnegative and finite. By the time homogeneity assumption the
next state of the game depends only on the present state and
actions. In particular, when the system is in state z € S at
epoch m and actions a € A and b € B are chosen by player I
and II, respectively, then the state at epoch m +1is y € S with
transition probabilities Pa,,, statisfying

S Pety=1, Py >0, Yz,y€S,ac€ A, beB.
v

P..y is 1efered to as the law of motion and assumed to be known
to each player.

The probability space that supports the process { X, Am, Bm :
m € N,} is defined as follows. The underlying sample-space is
Q:={S x.A xB }*, so0 that a typical realization w € § is repre-
sented by w := (21, a1,b1,%2,a2,b2,...). Let  be equipped with
the o-algebra F generated by the random variables {Xn, Am, Bm :
m e N +}.

A decision rule u™ (respectively v™) at epoch m for player
I (respectively II) is a mapping from {S x A x B}™ ! xS to
the set of all probability measures on A (respectively B ). Let
uP(z1,...,Zm) ( respectively v{*(zi,...,Z.)) denote the condi-
tional probability of choosing action a (respectively b) at epoch
m given the past history (z1,...,2m). A policy for player I (re-
spectively II) is denoted by u (respectively v).
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Let § € S bea fixed initial state known to the players. Policies
chosen by each player u and v induce a probability measure Py v
on (R, F) through the following equations:

Puv{Xi=¢}=1,
PU.V{Am = a.|X1 =Z1y.-- me = z} = u;"(z:l, e
Pyv{Bm =blXy =24,...,Xm =z} = v}'(24,...,2),
Pqu{Xm*H = yIXl =21..., Xm =2,An =06,Bn = b} =
Stationary policies f and h for player I and I, respectively,
are vectors with components
“;n(zh- . .,2:) =fza YmE€ N—H

v (21,5 2) = hey Vm € N,

Let C! and C}(C?, C%) denote the set of all policies and stationary
policies for player I ( II). Under policies f € C} and h € C2 for
player I and II respectively, the state process {X,,} is a Markov
chain with transition probabilities

'll f h) Z E Pzabyf:mhzb
acA BB

Define the random variables,

s Z),

Peay.

l n
Wa(z,a,b) := - N 1(Xm =2,Am = a,Bn = ).
m=1
Under stationary policies f and h the process {Yy, = (X, Am,
B,,)}%., is also a Markov chain, thus,

W(z,a,b) = hm—Zl
=1
exists Pp),-almost surely forall z€S,a€ A and b€ B.

A stochastic game is said to be unichain if the Markov chain
induced by each pure policy pair (g,,8,) is unichain. Let P(f,h)
denote the transition matrix induced by stationary policies f and
h for player I and II respectively. If P(f, h) is unichain, then there
exists a unique probability vector #(f,h) = {n.(f,h): z € S}
independent of initial state.

The long-run average reward of player I is given by

m =Ty Am = ¢, Bn = b)

R=bminf = 5" +(Xom, Am, Bo).
n—oo nm=1
If {Wa(z,a,b)} converges forall z € S,a € A and b€ B to
random variable {W(z, e,b)} Py v-almost surely, then

R=Y r(z,0,b)W(z,a,b), )
2,00
Py, v-almost surely.
Player I maximizes his expected reward while player II mini-
mizes his expected loss. Hence, the problem is to find policies u*
and v* such that

$(u,v*) < Y(u*,v*) < P(u',v),

where ¥(u,v) is the expected average reward under player I's
policy u and player II's policy v, i.e.,

Iﬁ(u,v) = Eu,v[R]‘

If u*,v* satisfy the above equation then u* and v* are called opti-
mal policies for player I and player II, respectively. And ¥(u®,v*)
is called the value of the game. It is straightforward to prove the
following proposition.

Proposition 1 Letf € C} and h € C} and let R'(f,h),..., R?(
f,h) be the recurrent classes induced by P(f,h). Denote {x:(f,h):
z € R¥(f,h)} for the equilibrium probability vector associated with
classi,i=1,...,p. Let

7 = min{m : m € Ny, Xn € UL, R'(f, h)}.

Then,

(£, h) ZP“‘{X eR,)} ¥ ¥ Y r(z,a.b)

zeri(f h)ac A veB
r;(f, h) fzahzp.

If the game is unichain, then

Y Y Y r(za,b)ma(f, h) foha.

zeS acA veB

$(f,h) =

3 One Player Controlling the Transi-
tion Probabilities

We will first investigate a special case, where the transition prob-
abilities are assumed to be independent of the player II's actions.
We consider the problem of finding the value of the game and lo-
cating the optimal stationary policies for both players. Through-
out this section the following assumption holds.

Assumption: The transition probabilities Pap, do not depend
on b for all z,y,a, ie,

Pu.v{Xm+1 = yl.X] =T1y... ,Xm = :l:,Am =a, B,,. = b} = P’GU'
This condition implies that transitions are influenced by player
I’s policy u and the components of the transition matrix under a

stationary policy are given as

sz f h 2 Pzayfzahzb

Poy(f),
which is independent of second player’s policy.

Remark: For f € C} and h € C} and the recurrent classes
induced by P(f), RY(f), ..., R?(f), the ezpected average payoffis

$(f,h) = EPf{X eRDY X XY r(z,0,b)xi(f) fuahas.

zeﬂ'(f) acAbes

If the game is unichain, then

$(f,h) =3 3 ):

=€ acA beB

r(z,a,0)x2(f) frahas.O

By the above assumption, one can define the strongly commu-
nicating class depending only on the law of motion {P..,} as
follows:

Definition 1 A set of states C is a strongly communicating class
if

(i) There ezists a stationary policy f such that C is a recurrent
class for the associated probability transition matriz P(f),

(if) C is not a proper subset of some set D which also satisfies (i).

The optimal policies for player I and II shall be constructed us-
ing this decomposition approach. The stochastic game is first re-
stricted to each of the strongly communicating classes C!,..., CP.
Each restricted game corresponds to a pair of dual linear pro-
grams. Based on the value of the restricted game an aggregated
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game is constructed. Since the maximizing player controls the

transitions, the aggregated game corresponds to a maximnum av-

erage reward MDP. An optimal stationary policy for player I is

then obtained by combining the optimal policy for the aggregated

game with the optimal solutions for the restricted game. The op-

timal policy for player II is obtained from the restricted game.
To this end, we first define the restricted game.

3.1 The Restricted Game

For each i = 1,...,8 and z € C', define the set F, = {a €
A : P, =0foral y¢ C'} as a subset of A, player I’s actions.
Then the restricted game SG-i is defined as follows: (i) the state
space is C'; (i) the action space for player lis F, forz € C,
the action space for player Il is B ; (iii) P,y and r(z,a,b) are
restricted to the state space C' and action spaces F,, B

For a fixed SG-i and a fixed initial state { € C’, each pair
of policies (u,v) induces a probability measure Pl",‘fv on (R,F).
The corresponding expected average payoff for SG-i is given by

Eh'v[li'l'l_l.gf % 2 r(va Ama Bm)]

m=1

\b"(u,v) =

For each SG-i, consider the following pair of dual linear pro-
grams.
Program Q}

T':= max Y 7, (3)
z€ Ci
st Y Y (bay— Peay)2za=0, Yye C (4)
g CHa€x
Z E Zpq =1 (5)
z€ C“ a€Fi
- Y r(z,a,b)20a+7- <0, Ve B, z € C{6)
agF’
220, Vz € CacF (7)
Program Q}
Ui = min ¢ {8)
stp+ 2(6 Py )t, — Z (z,a,b)s.(8) >0, (9)
b
Y s(b)=1, Vze C (10)
b

5:(b) 20, Yz € C', beB (11)

Remark: Program @} maximizes i Yaer, (2, a,b)2z,.

Theorem 1 Let f* denote a stationary optimal policy for player
I and let h* denote a stationary policy for player II. For each
i=1,...,8anducC! ve(C?

P“_h-{umgf% > (X, Am, Bm) < TH®:} =1,

m=1

v{hm sup ~ Z *(Xm) Am, Bm) > U'|®;} =1,

Lt

Furthermore, for a stationary policy h for player II we have

18 .
Pf’.h{,}lﬁ.‘g ; Z T(X,,., Amme) > U'l‘hi} =1

m=1

Proof: Let

1
Wa(z,a,b) := ; (X,,._z Am =a,B, =b),

uM:

Za(z,a) %El Xm =2,Am = a).

-

By compactness properties there is a subsequence {Ni(w)}
along which the limits W (z, a, b;w) and Z(z, a;w) exist,

blim Wn,(z,a,0) = W(z,a,b)>0, Vz€S,a€A,beB,

klim Zn,(z,a) = Z(z,a)20, Vz€S5,acA.

Let
W(z,a,b)
Z(z,a) *
Fix a policy u € C* and i = {1,...,s}. Assume that player
IT uses his optimal policy h* € C2. Clearly

S.(b) =

Shiy =1, by >0, Vz€S,beB.
b

Let T be the set of all sample paths w = (z1,84,by,...
satisfy

,) that

() a. € F., for all n > N, for some N € N,
(1) T.e8S Loed PeovZ(z,a;0) =L o g Z(y,aiw) forallye S
(ti3) W(z,a,bjw) = h3yZ(z, a;w)

By the Strong Law of Large Numbers for Martingale Differ-

ences (e.g., see [13]) and the property that Pu{A,, € Fx, a.a.} =
1forall u € C?,

Py(T) =
Since u and h* are independent and
Py{S:(b) =k} =1,
we have,
Pu,h‘(r) =1.

We want to show that all sample paths in the intersection of T
with the set &; = {X,n € C' a.a.} satisfy

1 -
li’I.I_Ii“I}f Y S 7(Xm, Amy Bm) < T,
ie.,

&Nl c {hmmf Z

m"l

Xma Am, Bm) S T‘}.
On the set ;N T

W(z,a,b)
Z(z,a)

0 Vag C',agF.
0 Vzg C', adFs,

I

It

giving
E E Z(z,a) =1,

z€ Ci aEF,

2 Y Peyi(z,0)= Y Z(y,a),

z€ ci a€F, acF,

Thus, Z(z,a) satisfies primal conditions over the set &; N T.
Hence from the primal program (9) we have

X Y X r(#ah)2(z,0)h, < T,

z€ Cia€%=beB

Vye Ci.

(12)

on & NT. On the other hand

N |
hﬂg}i;gr(Xm, Am ,Bn )<k]ﬂxo—mz_lr()(m,/1m,B,,.)
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> Y X r(z.a,0)Z(z,a)hy,

z¢ (1 0€7e »eB

holds over the set ®; N I'. When combined with (12) gives the
result.

Now fix a policy v € C? for player Il and i = {1,...,s}.
Assume that player I uses his optimal policy f* € C}. Let T
denote the set of all sample paths w that statisfy

(3) @n € Fu, forall n > N, for some N € N.

(1) T.eS Lacd Pravl(z,a;w w)=T,ed Z(y,a;w) forally€S.
(iit) W(z,a,bw) = 7(£") f2,S:(b; w)

Clearly
On the set ;N T

W(z,a,b) = 0, Vz & C',a g F,
S.(b) = 0, Vz & C°,
giving
T S(b)=1Vze C.
beB
Since z2, = %.(f") f2, satisfies the condition (4) and S.(b) satisfies

dual condition (13) we have from (12),
3 7(2,8,0)2;,5:(b) Pt 2 (6 -

z,0,b z,ay

<

Pray )2zaty

=

Thus, dual program minimizes 5, 4 (2, a, b)z2,Ss(b), giving
Y Y Y r=a,b)2,5(0) 2 UF

z€ c a€%x b B

on the set &; NT. The result is obtained by considering the
following equations.

l.lmsup Z (X, Amy Bm) 2 hm i E (Xmy Am, Bm)

n—oo T ooy k m=1

=X L X

z€ C‘ L bEB

r(z, a,b)zl, .(b).

When second player uses stationary policies h, then the limit
below exists also on the set ;N T

2 Z E r(z, a,b)2;,S.(b).

z¢ C'9€%+5eB

dm s LS +(Xmy Amy B) =

% m=1

Hence, giving
F f'.h{,'ile,i Y r(Xm, Am, Bn) 2 U'} = 1D
m=1

Corollary 1 Let f* denote the stationary optimal policy for
player I, and let h* denote the stationary optimal policy for player
II. For each SG-i, initial state §¢ € C', policies u € C! and
veC* heC?

Pflh‘{hvl.l-‘alelgfl E T(X..,A,,.,Bm) < Tl} =1,

{lunsup Z T(xm’ AmvBm) 2 U‘} =1,

B =1

.1 .
PE"h{'}g&;gl f(xm’ Am, Bm) 2 U } = 1,
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holds.

Using the definitions of z; = ¥, zzg and Ii = {z € C': 2, >
0}, one can construct stationary policies for SG-i by an algorithm
similar to the one given in [12]

Algorithm 1:

1. Find optimal solutions z* = {z3,} and 8* = {s;(b)} for the

above pair of programs.

2. Define bz} := s3(b) if z € C°.
3. Define f2 := -n 1fz eI

4. Set E=1Ii.

5. While E # C%, Do:

o Choose a triple (z,a,,y) such that z € C'—E,y € E,

a € F; and Pg,,y > 0. _
o Set fi =1;and Set E=EU {z}

6. Continue.

Theorem 2 The stationary policies f* and h* are optimal for
SG-i, for all ¢ € C'.

Proof: For a unichain transition matrix

22 =7(F)f, Vz€ C,a€F
Also s%(b) = A%, for all z € C'. Since 73, and 57(b) are optimal
for the pair of mathematical programs, respectively, I* = U*

holds, giving
Ti

Z Z Z r(z,a,b)z;,a

:(0)
z€ c 3€%% pel3
Z Z Z r(z,a, b)w,(f")f"h"
ze C € e B
’pi,{(fai, hu‘)

il

I

By Corollary 1 we have

P*4(u,h") < T,
and ]

(7, h) 2 T
We have

P(u, h™) < PP, h) S PH(ET, D). (13)

Since if one of the players uses a stationary policy, the problem
for the other player becomes a MDP and it is well known that
in this case there exist a stationary optimal policy, thus implying
that it is enough to consider the optimization problem over the
stationary policies [12]). Hence (13) implies the resultD)

3.2 The Aggregated SG

Consider the aggregated game, where there is one state corre-
sponding to each strongly communicating class C* plus states cor-
responding to the transient states 7. For each statei=1,...,s,
the action 6 is available, which keeps the system in state i with
probability 1. Since only the maximizing player controls the tran-
sition probabilities, the actions of the form (z,a) are also avail-
able, so that the original game moves to state z and player I
chooses action a ¢ F,. Thus the aggregated SG is defined so that
the state space is § = {1,...,5 + t} where ¢ denotes the cardi-
nality of the set T, the state-dependent action spaces for player
I are




A
A

the action space for player Il is B, and the law of motion is
defined accordingly. The average reward for the aggregated game
given that the initial state is ¢ € S is defined as,

{0}u{(z,0):z€ Cag¢ F.}iec8,1<i<s
As+1<i<s+t

Aiw) 1= Bllimint 1 35 3T 1(Xo = K,

m=1 k=1

and the optimal payoff for the aggregated game is
Bi = sup fi(u).

uel
An optimal pure policy g can be found for the aggregated
game. The optimal pure policy g of player I moves the game
through state space 5. Hence, if g(i) = 6 then, it is best to
play the restricted game SG-i once it has entered the strongly
communicating class C'. But if g(¢) = (z, a), then playcr I moves
the original game to state z and then chooses action a.

We can construct the stationary policies as follows. The sta-
tionary policy h for player II is obtained by sctting

. h.i
e (18

And stationary policy f* for player I can be obtained from the
algorithm given in [1]. The following Lemma is stated with-
out proof, since the proof is essentially the same as the proof
of Lemma 3.11 in {17]

ifze C,
for arbitrary bfor z € 7.

Lemma 1 The stationary policy f* constructed by the algorithm
is optimal for the intermediate problem. Moreover, if i is a recur-
rent state under the pure policy g in the aggregated SG, then C'
is closed and contains ezactly one recurrent class under P(£*); if
i ¢ H, then

Ppe(®) =0.

Theorem 3 The stationary policies f* and h* are optimal for the
original problem.

Proof: From Proposition 1

Eg-y[R] = gpg.{x, € C'} Zc 5_}4 562133 r(z,a,b)
z¢ C*a€

(£ ) i = T PEX, € CI)T¥ = f;T‘Pf‘.{q».-}.
i€EH =1

But from Lemma 1 and Theorem 1

P NP .
BawlRl = 3By peliminl = 3 r(Xom, A, Br) PG {21}
1 d
< Z;TP.‘.{@-'}SEr.h'[R]'
On the other hand,
Ld TP -
Ef',h[R] = gE(.‘h[hglel.}f;mE__‘lT(xm,Avam)l Q"]P:'{‘}"}
’ s
> ET'P“..{Q;}D
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4 General Stochastic Games

In this section we investigate the stochastic game where both
players control the transition probabilities. We assume that the
Markov chain generated by each stationary policy pair (f,h) is
irreducible, i.e., there is only one recurrent class with no transient
states.

Assume that player I uses a stationary policy f, then the payoff
earned from player Il is

rab(f) := Z r(z,a,b) fra,

and the transition probabilities determined by player II is
PCW(f) = z Pzalmfza-

Then, player II will try to minimize his loss, which gives rise to
the following mathematical program

min Z r25(f) vzt
z,b
s.t. EPZW(f)”=b = Zvﬁ" Vyes
zb b

z:vzb=1v
z.b
v >0, VzeS,beB.

Now let
Zza
fza =

Eu zza
with 2.4 > 0, and ¥, 2,4 = Ty w, for all z € S . And consider
the following minimax problem.

z
T := maxmin r(z, a,b)———v,
5 v z%b ( )&zn b
. zla
= min m.ax'za:br(z,a, b)ﬁvd, (14)
2 onlm fza Vzb = szbv VyES (15)
z,a,b Zn Zza b
Y zza=) v, Vz€ES (16)
a b
Yva=1, (17)
z,b
15620, 220, VzE€S,ac A, beB (18)

Along the same lines of proof of Theorem 1, one can prove

Theorem 4 Let f* € C} and h* € C} be optimal policies for
player I and II, respectively. Then for all policies f € C} and
heC}

n

. 1
Pf',h{hglsﬁl’ = glr(xnn Am,Bn) 2T} =1,

R S
Py e {liminf — 37 r(Xm, Am, Bm) < T} = 1.

m=1

Theorem 5 Suppose that {22,} and {v},} are solutions to the
static game. Iff* and h* are obtained through the transformations

ft _ { ’T.o('?;'?' ifz‘(z) = Eu z‘(z’a) >0

" | arbitrary but f2, > 0,Va € A, otherwise

b= { S Tole) =D >0

arbitrary but k%, > 0,Vb € B, otherwise
then they are optimal for the stochastic game.



Proof: From the constraints we have
v*(z) = 2*(z),
}:v'(a:) =1,

V'(Y) = Y Peatyv’(2,0) 12

z,a,b

Zb Pewy(£*)h3pv*(2)
Z P (f*, h™)v"(z).

Since there exist a unique probability vector associated with
P(f*,h*), these equations imply that

n(f*\h") =v'(z), Vz€S.

1l

Thus, we have

NP e . iy g e
ll'{l_l‘{.l}f; Z r(meAm7Bm) = E r(z1a7b)"2(f yh )fzahzb

m=1 z,a,b

=3 r(z’a,b)v'(z,b)z'(z,a)
zab v-(z)
The result follows from Theorem 10
Thus, we can obtain optimal stationary policics for both play-
ers from the static game, if this minimax problem has a solution.
Remark: Note that in this minimax problem the policics of play-
ers are not independent. A game with this added constraint is
called generalized game[4].

=T
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