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INTRODUCTION

Semi-Markov decision processes (SMDPs)
are used in modeling stochastic control prob-
lems arising in Markovian dynamic systems,
where the sojourn time in each state is a
general continuous random variable. They
are powerful, natural tools for the optimiza-
tion of queues [1-7], production scheduling
[8—11], and reliability/maintenance [12].

For example, in a machine replacement
problem with deteriorating performance over
time, a decision maker, after observing the
current state of the machine, decides whether
to continue its usage, or initiate a mainte-
nance (preventive or corrective) repair, or
replace the machine. There are a reward
or cost structure associated with the states
and decisions, and an information pattern
available to the decision maker. This deci-
sion depends on a performance measure over
the planning horizon which is either finite or
infinite, such as total expected discounted or
long run average expected reward/cost with
or without external constraints, and variance
penalized average reward.

SMDPs are based on semi-Markov pro-
cesses (SMPs) [13] (see also Semi-Markov
Processes SMPs), that include renewal pro-
cesses (see also Definition and Examples
of Renewal Processes) and continuous-time
Markov chains (CTMCs) (see also Defini-
tion and Examples of Continuous-Time
Markov Chains) as special cases. In an
SMP similar to Markov chains (DTMCs) (see
also Definition and Examples of DTMCs),
state changes occur according to the Markov

property, that is, states in the future do
not depend on the states in the past given
the present. However, the sojourn time in a
state is a continuous random variable with
distribution depending on that state and the
next state, a Markov chain is a SMP in which
the sojourn times are discrete (geometric)
random variables independent of the next
state; a CTMC is a SMP with exponentially
distributed sojourn times; and a renewal
process is a SMP with a single state. SMDPs
, first introduced by Jewell [14] and De
Cani [15], are also called as Markov renewal
programs [16—19].

This article is organized as follows: the
next section introduces basic definitions
and notations. Various performance cri-
teria are presented in the section titled
“Performance Measures” and their solution
methodologies are described in the sections
titled “Discounted Reward Criterion,”
“Average Reward Criterion,” and “Expected
Time-Average Reward and Variability.”

BASIC DEFINITIONS

We consider time-homogeneous, finite state,
and finite action SMDPs, and give references
for the more general cases. Let {X,,, m > 0}
denote the state process, which takes values
in a finite state space S. We also use
{(X;n, m € N} to denote the state process
with A representing the set of nonnegative
integers. At each epoch m, the decision
maker chooses an action A,, from a finite
action space A. The sojourn time between the
(m — 1)-st and the (m)th epochs is a random
variable and denoted by Y,. The underlying
sample-space Q = {S x A x (0,00)}*° consists
of all possible realizations of states, actions,
and the transition times. Throughout, the
sample space will be equipped with the
o-algebra generated by the random variables
{(Xom, Am, Tie1; m > 0}, The initial state is
assumed to be fixed and given. Note that
we will suppress the dependence on the
initial state unless given otherwise. Denote
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Pyyy,x€S,a € A,y €S, for the law of motion
of the process, that is, for all policies u and
all epochs m

Py{Xmi1 =y Xo,A0,Y1,...,Xn =x,An =a}

= Pyay.

Also conditioned on the event that the next
state is y, Ti,+1 has the distribution function
F.qy (), that is,

Pu {Tm+1 = t|X0> A07 Tl, )
X =%,An =a,Xpn11 =y} = any(t)-

Assume that F,(0) < 1.

The process {S;, B; : t > 0}, where S; is the
state of the process at time ¢, and B; is the
action taken at time ¢, is referred to as the
SMDP. Let T, =Y _; T, that is, denote
the time of nth transition. For ¢ € [T}, Th+1),
clearly

St :Xm, Bt :Am

Policy Types

A decision rule u™ at epoch m is a vector
consisting of probabilities assigned to each
available action. A decision rule may depend
on all of the previous states, actions, tran-
sition times, and the present state. Let u}’
denote the ath component of ™. Thus, it is
the conditional probability of choosing action
a at the m-th epoch, that is,

Pu{A, =alXo=x0,A0 =00, V1 =11,...,

X =x} =ul(x0,a0,71,. - .,%).

A policy is an infinite sequence of decision
rules u = {6, ul,u?,..}.

Policy u is called Markov policy if u™ at
epoch m depends only on the current state

not the past history, that is,
u™(x) = u)' (%0, a0, T1, - - . ,X).

A policy is called stationary if the decision
rule at each epoch is the same and it depends
only on the present state of the process,
u={u,u,u,...}; denote f,, for the probabil-
ity of choosing action a when in state x. A

stationary policy is said to be pure if for each
x € Sthere is only one action a € A such that
fxa« =1. Let U, M, F, and G denote the set of
all policies, Markov policies, stationary poli-
cies, and pure policies, respectively. Clearly,
GCcFcMcU.

Under a stationary policy f, the state pro-
cess {S; :t > 0} is a SMP, while the process
(X, : m € N'} is the embedded Markov chain
with transition probabilities

ny(f) = Zanyﬁcw

acA

Clearly, the process {S;,B; :t > 0} is also a
SMP under a stationary policy f with the
embedded Markov chain {X,,,A,, : m € NV}.

Chain Structure

Under a stationary policy f, state x is recur-
rent if and only if x is recurrent in the
embedded Markov chain; similarly, x is tran-
sient if and only if x is transient for the
embedded Markov chain. A SMDP is said
to be unichain (multichain) if the embed-
ded Markov chain for each pure policy is
unichain (multichain), that is, if the transi-
tion matrix P(g) has at most one (more than
one) recurrent class plus (a perhaps empty)
set of transient states for all pure policies g.
It is called irreducible if P(g) is irreducible
under all pure policies g. Similarly, a SMDP
is said to be communicating if P(f) is irre-
ducible for all stationary policies that satisfy
fwa>0,forallx €S, a e A

Let t(x, a) define the expected sojourn time
given that the state is x and the action a is
chosen just before a transition, that is,

T(x,a) £ EuYnlXn-1=x,An_1 =0l

o0
=/ ZP,,{X =y, Tm>t
0

yesS
| Xn—1=x%,An_1 =al}dt

N /:o [1 B Zannyay(t)]dt.

yeS

Let Wi(x,a) denote the random variables
representing the state-action intensities,

t
Wi, a) 2 % / 1{(Sy, By) = (x,0)} ds,
0



where 1{.} denotes the indicator function. Let
Uj denote the class of all policies u such that
{Wi(x,a); t > 0} converges. Thus, for u € U,
there exist random variables {W(x,a)} such
that

lim Wy(x,a) = W(x, a).

t—00

Let U; be the class of all policies u such
that the expected state-action intensities
{EulWi(x,a)l; t > 0} converge for all x and a.
For u € U7 denote

walx,a) = imEu[Wilx, a)].

From Lebesgue’s Dominated Convergence
Theorem Uy C Us.

A well-known result from renewal theory
[13] is that if {Y; = (Sy, By) : ¢ > 0} is a homo-
geneous SMP, and if the embedded Markov
chain {X,,,m € N} is unichain then, the pro-
portion of time spent in state y, that is,

¢
lim 1 1{Y; = y}ds,
t—oo t Jo

exists. Since under a stationary policy f,
the process {Y; = (S, By) : t > 0} is a homoge-
neous SMP, if the embedded Markov decision
process is unichain, then the limit of Wy(x,a)
as ¢ goes to infinity exists and the proportion
of time spent in state x when action a is
applied is given as

t(x,a)Z(x,a)
Z t(x,a)Z (x,a),

x,a

Wx,a) = tlim Wix,a) =

where Z(x,a) denotes the associated state-
action frequencies. Let {z¢(x,a);x € S,a € A}
denote the expected state-action frequencies,
that is,

. 1 ¢
2p(@,a) = lim By~ 31Xy 1 =, An-1 =a)

m=1

= ﬂx(f)f;cay

where 7, (f) is the steady-state distribution of
the embedded Markov chain P(f).

The long run average number of transi-
tions into state x when action «a is applied per
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unit time is,

vf (x.a) = ﬂx(f)fxa
Y e
zf(x,a)

=" (1)
Z t(x,a)zf (x,a)

x,a
This gives wr(x,a) = t(x,a)ve(x,a).

Reward Structure

Let R; be the reward function at time ¢. R; can
be an impulse function corresponding to the
reward earned immediately at a transition
epoch and/or it can be a step function between
transition epochs corresponding to the rate
of reward as described below. The decision
maker earns an immediate reward R(X,,,A,,)
and a reward with rate r(X,,,A,,) until the
(m + 1)-th epoch, that is,

ift =T,

| R,
R, = { it € [Ty Tosr). 2

(X, Am),
Thus,
Rm+1 = R(Xm,Am) + r(Xm,Am)Tm—O—l’

is the reward earned during the (m + 1)-th
transition [20—22].

Similarly, there is an immediate cost
CX,,A;) and a cost with rate c(X,,,A;,)
with

Cm+1 = C(Xm; Am) + C(Xm; Am)Tm+1-

Hence, at any epoch if the process is in
state x € S and action a € A is chosen,
then the reward earned during this
epoch is represented by 7(x,a)2= R(x,a)+
r(x,a)t(x,a). Similarly, the cost during this
epoch is represented by c(x,a) = Clx,a)+
clx,a)t(x,a).

Example 1. Consider the machine replace-
ment problem mentioned in the section titled
“Introduction” with states (1) machine is in
good condition, (2) machine has some minor
problems, (3) machine is down and needs to be
replaced. Time to failure of the machine fol-
lows a Weibull distribution with scale param-
eter equal to 8000h and shape parameter
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equal to 4. The failure is minor with probabil-
ity 0.95 and major requiring replacement of
the machine with probability 0.05. Life time
of a machine with minor problems follows
a Weibull distribution with scale parame-
ter equal to 20,000h and shape parameter
equal to 4. However, a machine with minor
problems could be maintenance repaired to
make it as good as new. Maintenance repair
takes Weibull distributed amount of time
with scale parameter equal to 8 h and shape
parameter equal to 0.5. On the other hand,
the machine replacement time is normally
distributed with mean 72h and variance of
8 h. Running a fully working machine earns
$100/h, and a machine with minor problem
earns $75/h profit. It costs $40/h to repair
and $10,000 to replace a machine. Note that
there is no control action available in states
1 and 3. In state 1 the decision maker needs
to “wait” and in state 3 s/he needs to order
a new machine. Let us denote this action
as action 1. In state 2, there are two possi-
ble actions to choose: “wait” action denoted
as action 1, and “initiate repair” denoted as
action 2. Parameters of this model are:

P113=0.95, P113=0.05, Pp;3=1,
Py =1, P31=1,

1(1,1) = 7252, ©(2,1) = 1813,
1(2,2) = 48, 1(3,1) =72,

7(1,1) = 725,200, #2,1) = 135,975,
7(2,2) = —1920, 7(3,1) = —10,000.

The last two reward values correspond to the
incurred costs under repair and replacement,
respectively.

PERFORMANCE MEASURES

We will focus on the optimality criteria
over the infinite horizon, since some general
results could be obtained for these models.
We will first consider finding a policy u that

will maximize the total discounted reward
defined as

¢o(u) A Ey [[ e R ds] , (3)
= 0

where « represents the discount factor
[14,23-26]. Discounted reward optimality
criterion is easier to analyze and understand
than the average reward criterion, because
the results for these models hold regardless
of the chain structure of the embedded
Markov chain. In fact, the existence of this
integral is immediate under finite rewards.
In addition, discounting lands itself naturally
in economic problems in which the present
value of future earnings is discounted as
a function of the interest rate. Another
interpretation of these models implies the
importance of the initial decisions.

The great majority of the literature, on the
other hand, is concerned with the long run
average expected reward criterion with

t
91() £ lim inf%Eu [ / R, ds], 4)
— 00 0

¢1 denoting the long run average expected
reward [14,17,22,27—29]. The following alter-
native to ¢; is given by Jewell [30], Ross
[31,32], and Mine and Osaki [18] as

bl

Earg 0 P

po(u) & lir{giorolf

referred to as the ratio-average reward [33].
The performance measure ¢ is also used by
other researchers [7,14,34-38].

Let

¢y = sup ¢a(m), ¢ = sup¢1(w),
uclU uclU

¢5 = sup ¢ga(w).
uclU

A policy u is optimal for ¢,() if ¢, (w) = ¢J.
For a fixed ¢ >0, a policy u is e-optimal
for ¢o()) if ¢,(w)> ¢ — . Optimality and
e-optimal for ¢1(-), ¢2(-) and the other perfor-
mance measures we consider in this article
are defined analogously.



The following expected time-average
reward criterion has been considered rec-
ently by Baykal-Girsoy and Giirsoy [39-41]

¢
v(u) £ E, [Iim inf 1 / R, ds] (6)
t—oo 0
subject to the sample path constraint,

1 t
Py {limsup Z/ Csds < y} =1 (D
0

t—00

This constraint requires that the long-run
average costs on almost all sample paths
should be bounded by y.

More generally, they investigate the fol-
lowing expected time-average variability

t

1 1
v(w) £ Ey |:1i{n inf; h(Rs, 7 / R, dq) ds],
—00 0

€))

0

where A(.,.) is a continuous function of the
current reward at time s and the average
reward over an interval that includes time
s. By letting v* = sup, .y v(w), the optimal-
ity and e-optimality for v(.) are analogously
defined.

DISCOUNTED REWARD CRITERION

Discounted reward can be rewritten as:

¢a(u) = Eu |:Z e—aTm (R(Xm;Am)

m=0
s Bty
o
B[
m=0 x,a 0 o

X (1 — Zany /ooeiat deay(f)>i|
0
y

PyXm =x, A =a,Tp, < t}.

The terms inside the second integral could be
recognized as the Laplace transform of the
(}ensity function fy4,(-) and will be denoted as
ﬁcay (a).

The optimal discounted reward vector is
represented by ¢>* for each initial state x, and
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it can be shown that it satisfies the optimality
equation for allx € S:

. r(x,a) B .
¢a = In;'iX {|:R(JC,G) + 70[ (1 JZanfoaj):|
+ Zany];xay(Ol)q% }
Y
= max {r"‘(x,a) + ZPﬁayq}Z} . 9)
¥y

Second equality is obtained from the first
by denoting the terms inside the square
bracket as r*(x,a) and writing anyfxay(oz)
as Py . Note that the second equality is
similar to the one obtained for the Markov
Decision Processes (MDPs) (see also Total
Expected Discounted Reward MDPs:
Existence of Optimal Policies). Thus, dis-
counted SMDPs can be reduced to discounted
MDPs by using these transformations. Since
P, < 1,theright hand side of the optimality
Equation (9) is a contraction mapping and
the next theorem is immediate.

Theorem 1. For SMDPs under the dis-
counted reward criterion:

e There exists a unique solution to the
optimality equation (9) and it is equal to
by

e There exists an optimal pure pol-

icy g given by, ¢u(g)=¢;=
u —P;‘C‘ay)*lr”‘(g*) where r*(g* denotes

the single-period discounted reward
earned under policy g*.

This optimal pure policy could be
obtained wusing the policy iteration (see
also Total Expected Discounted Reward
MDPs: Policy Iteration Algorithm), value
iteration (see also Total Expected Dis-
counted Reward MDPs: Value Iteration
Algorithm), or linear programming (LP)
algorithms [5-7,38]. The LP algorithm is
discussed next. Consider the following LP
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with given numbers B, >0 for x € S.

max Z r“(x,a)z(x,a)

xeS,acA

st. Y by —Pl)2x,a)=p, yeS

xeS,acA

z(x,a) >0, x€S8, acA

Let z* be an optimum solution of the above
LP. Clearly, any extreme point of this LP
has |S| number of basic variables, where | - |
denotes the number of elements in a given
set. Thus, z*(x,a) is positive only for one
action a. The optimum pure policy g* is then
obtained by assigning g% in such a way that
z*(x,g8%) > 0. Constraints defined in a similar

fashion,
E, [[ e *Cy ds] <y,
0

could be included into the LP as

Z c“(x,a)z(x,a) < vy,

xeS,acA

with c¥(x,a) = Clx,a) + (1 — Y Proyfray)-
Since every new constraint will increase
the number of basic variables, the optimum
policy will no longer be pure but randomized
stationary [24].

For the countable state case, we need the
assumption,
Assumption 1. There exists §>0 and
&> 0, such that

F.y(5)<1—¢ forallxandy e Sand a €A,

together with |r*(x,a)] < M < co to ensure
the existence of an optimal pure policy. Addi-
tional conditions are required for SMDPs
with Borel state and action spaces, and
unbounded rewards [21,24,38].

AVERAGE REWARD CRITERION

Average or ratio-average expected reward
criterion is applied to systems in which
the system dynamics is not slow enough to

warrant discounting. This criterion is more
difficult to analyze since the existence of the
optimal stationary policy depends on the
chain structure. Under the condition that
the SMDP is irreducible, ¢1(f) = ¢o(f) for
every stationary policy f [18,31]. However,
this may not hold even for unichain SMDPs
[33]. While ¢, is clearly the more appealing
criterion, it is easier to write the optimality
equations when establishing the existence
of an optimal pure policy under criterion
@2 [22,29,42]. On the other hand, for finite
state and finite action SMDPs, there exists
an optimal pure policy under ¢; [27,29,42],
while such an optimal policy may not exist
under ¢2 in a general multichain SMDP
[43]. Jianyong and Xiaobo [43] investigate
average reward SMDPs focusing on ¢2 and
using a data-transformation method [19].
They show that the optimal pure policy
exists in some special cases such as the
unichain case and the weakly communicating
case.

The optimal pure policy for the average
expected reward criterion in multichain
SMDPs is obtained from the optimal solution
of the following LP [25] under the assumption
on the sojourn times.

max Z rx,a)v(x,a)

xeS,acA

s.t. Z (8yy — Pxay)v(x,0) =0, yeS
xeS,acA

Y ta)vp,a)

acA
+ Z (Sxy _any)t(xya) = ,By’ y e S
xeS,aeA

v(x,a) >0, tlx,a) >0 xS, ac A,

where B, >0 for x € S and Zy By =1. The
optimum average expected reward for each
initial state is obtained from the dual of
this LP.

In the unichain case, the average reward
remains constant regardless of the initial



state, and the LP reduces to

¢] = max Z r(x,a)v(x,a)

xeS,acA
s.t. Z (8xy — Pxay)v(x,0) =0, yeS
xeS,aeA
Z (y,a)v(y,a) =1
xeS,aeA
v(x,a) >0, xS, acA,

with the optimum solution denoted as v*. The
optimum pure policy g* is then obtained by
assigning g in such a way that v*(x,g}) > 0.
The optimality equations are given for each
state x by

. = mfx rlx,a) — gtlx,a) + Zanygy .
y

The solution to these equations, {¢*,g*} pro-
vides the optimum average expected reward,
o1 =g"

The constrained problem has been inves-
tigated for the average reward SMDPs
[20,33,34]. Beutler and Ross [20,34] consider
the ratio-average reward with a constraint
under a condition stronger than the unichain
condition. In Ref. 33, Feinberg examines
the problem of maximizing both ¢; and ¢2,
subject to a number of constraints. Under
the condition that the initial distribution is
fixed, he shows that for both criteria, there
exist optimal mixed stationary policies when
an associated LP is feasible. The mixed
policies are defined as policies with an initial
one-step randomization applied to a set of
pure policies, hence they are not stationary.
He provides an LP algorithm for the unichain
SMDP under both criteria. Average expected
reward SMDPs with Borel state and action
spaces and unbounded rewards are con-
sidered by Schél [42], Sennott [21], and
Luque-Véasquez and Herndndez-Lerma [44].

EXPECTED TIME-AVERAGE REWARD AND
VARIABILITY

The expected time-average reward criterion
is similar to the average expected reward cri-
terion. Fatou’s lemma immediately implies
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that ¥ (w) < ¢1(w) holds for all policies.
Baykal-Giirsoy and Giirsoy [40] show that
for a large class of policies, these two rewards
are equal and an e-optimal randomized sta-
tionary policy can be obtained for the general
(communicating, multichain) SMDP, while
such a policy may not exist for the average
reward problem [40]. Multiple constraints
and the more general expected time-average
variability criterion are also discussed. They
show that an e-optimal stationary policy
can be obtained for the general SMDPs. If
h(x,y) = x — L(x — ¥)?, then the optimal policy
is a pure policy. Note that in this case max-
imizing v(u) corresponds to maximizing the
expected average reward penalized by the
expected average variability. A decomposi-
tion algorithm to locate the ¢-optimal station-
ary policy for both problems is given in Ref.
40. This algorithm utilizes an LP of the form:

max Z h[?(x,a), Z ?(y,b)v(y,b):|v(x,a)
xeS,acA yeS,be A

s.t. Z ((Sxy _any)v(x,a) = 07 y e S
xeS,acA

Z tx,a)vix,a) =1

xeS,acA

Z cx,a)v(x,a) <y
xeS,acA

vix,a) >0, x€8, acA
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