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INTRODUCTION

When selling similar products, mainly due
to product substitution by customers in
case of stock outs and price/brand concerns,
demand for a particular product may depend
on the inventory positions of other products.
Thus, the effective demand for a particular
product is crosscorrelated to the demand
of other products. Also, demand for each
product might be autocorrelated. Demand
created by advertisement or price discounts
today might reduce demand in the future.
From time to time, the demand might also
experience other disturbances that are due to
the current economic or political conditions.
These dependencies make it challenging for
a firm to generate accurate demand forecast
for each product and to determine the
“right” order quantities so as to maximize
its own profit. Survey results reported
at the Harvard/Wharton Merchandising
Effectiveness Project [1] have found that
these subjective forecasts tend to have an
average forecasting error of 50% or more. As
a result, some firms buy too little of some
products resulting in lost sales and profit
margin, and some firms buy too much of
some products resulting in excess supply
that must be marked down after a while,
frequently to the point where the product
is sold at a loss. A survey conducted by

a major retailer and reported in the New
York Times on June 2, 1994, concluded that
50% of customers did not purchase products
when they visited the store and of these
40% stated they did so due to their inability
to find a given product. Similar under-
and oversupply costs have been reported
for other products such as automobiles [2]
and computers [3]. Demand uncertainty is
highest when a new product is introduced
against competition. In some industries, for
example, in the pharmaceutical industry,
firms prefer to be responsive to the customer
demand and thus incur high inventory costs
to reduce lost sale. This is where accuracy in
forecasting becomes crucial.

Firms spend a great deal of time and
resources trying to predict, as accurately as
possible, the future demand for their prod-
ucts and services. Clearly, it is beneficial to
know about the future, and, in most cases, the
near future where accuracy is most needed.
Knowing about the future enables making
better decisions of ordering when inventories
are reviewed—both in pull- and push-type
systems. Also, production plans and resource
scheduling are done more effectively in push-
type systems if we have a good idea about the
future.

Two issues that are of concern here are
forecasting and inventory control for multi-
item systems where demand for these items
can be correlated, as well as temporally cor-
related for each item. Classical forecasting
procedures are usually carried out for single
items. Standard coverage of well-known
text books includes the following topics:
times series analysis, exponential smoothing
methods (see Holt-Winters Exponential
Smoothing), moving average (MA) met-
hods, regression with various possible exten-
sions [4-8]. These references also include the
study of nonstationary autoregressive inte-
grated moving average (ARIMA) models (see
Forecasting Nonstationary Processes).
Nevertheless, a number of procedures can
be wutilized for the forecasting activities
under correlated demand. For example,
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regression models can be utilized to express
several dependencies. However, more spe-
cialized tools, for example, multivariate time
series modeling, state-space methods (see
Forecasting: State-Space Models and
Kalman Filter Estimation), are needed for
the purpose of forecasting for multiple items
with correlation across items and time.

Most of the initial work done in the area of
inventory theory has ignored the correlation
between demand for different items as well
as time periods. Instead, the demand is
assumed to follow an independent stochastic
process in order to ensure tractability of
analytical results. However, more realistic
models incorporate the past history of the
market on the present demand behavior.
Intuitively, it can be said that autocorre-
lated demand would worsen performance
measures such as expected number in the
warehouse and expected number of stock
outs. It is important to investigate how
profound the effect of demand autocorrela-
tion is on system performance. Blinder [9]
investigates the change in the optimum price
and optimum order size to the demand fluc-
tuations and shows that they will be larger
when demand is highly correlated. Kahn [10],
assuming a first-order autoregressive, AR(1),
demand model, demonstrates that the order
size is more variable than sales if demand
is positively correlated. Altiok and Melamed
[11] study the impact of autocorrelation on
several production/inventory systems. They
consider three different environments; an
M/M/1 (see the section titled “Single-Station
Queues: CTMC Models” in this encyclopedia)
type workstation receiving autocorrelated
arrival process; an M/G/1 (see the section
titled “Single-Station Queues: Non-CTMC
Models” in this encyclopedia) workstation
with deterministic processing times, and
autocorrelated operation dependent time to
failures; and a single-stage manufacturing
process with a raw material buffer and
finished product inventory. They incorporate
autocorrelation in random elements in the
system, such as demand, lead time, time
to failure, and repair times and investigate
the effect on some system performance mea-
sures, such as average product waiting/flow
times, throughput, and customer service

levels. The authors conclude that finished
product level and customer service level are
highly affected by the autocorrelation in the
demand process [11].

We think that the following questions are
valid for inventory analysis:

e How can one represent the demand
function(s) that consider(s) the existing
correlation structure?

e How does the level of demand correla-
tion affect order quantities and expected
profits over time?

e What is the optimal inventory control
policy under correlated demand?

The first question represents the forecast-
ing aspect, and the second and third ones
represent the inventory control aspect. We
aim to overview the inventory approaches
in order to ascertain the demand-forecasting
requirements. We then review forecasting
procedures that will be helpful in realizing
the aforementioned inventory models.

The next section briefly discusses the pre-
vious work on single and multiple item inven-
tory control under correlated demand. In the
section titled “Evolving Forecasts Through
Time”, we examine the notion of evolving
forecasts, including the Martingale model of
forecast evolution (MMFE). We then summa-
rize our conclusions.

INVENTORY PLANNING UNDER
CORRELATED DEMAND

The bulk of inventory theory is based on
single-item problems, with known indepen-
dent and identically distributed demand. For
the newsvendor problem (single period), the
optimal policy is given by the critical fractile
solution for the optimal stock level S* [12]
(see Newsvendor Models). In the case of a
normally distributed demand with mean w
and variance o2, the solution simplifies to

S* =u+zo,
where z is obtained by evaluating the cumu-

lative distribution function of the standard
normal at the critical fractile. Scarf [13] has
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shown the optimality of (s;,S;) policy for
the dynamic inventory control problem with
setup cost, K, under the condition that the
optimal value function at each period ¢ is K-
convex. In such a policy, it is optimal to order
up to the optimal stock level S whenever the
inventory level drops to the reorder level, s, or
below. If the setup cost, K, is zero, the opti-
mal policy reduces to the base-stock policy
that prescribes ordering up to .S whenever the
inventory level is less than S. It was shown by
Veinott [14] and Sobel [15] that under certain
conditions the optimal base-stock policy is
myopic, that is, it can be decided only by con-
sidering the current period. Myopic policies
are easier to implement and thus are prefer-
able to the more complicated time-dependent
policies. Veinott [14] has extended his results
on the optimality of myopic policies to the
demand distributions that are independent
but not identical as long as they are stochas-
tically increasing over time.

In this section, we review inventory mod-
els with correlated demand. The subsections
consider single/multi item-single location
and single/multi-item—multiple locations,
with correlated demand.

Single Item-Single Location with Correlated
Demand

We first review a broader group of studies
referred to here as inventory problems under
nonstationary demand. In these models, the
demand distribution can vary during each
period and is considered mostly in the con-
text of single-product single-firm inventory
control. Karlin and Fabens [16] introduce
a Markov-modulated demand model that
depends on the changing environmental fac-
tors. In this model, environmental factors are
represented as the states of a Markov chain
(see the section titled “Discrete Time Markov
Chains” in this encyclopedia) and the demand
in any given period is a random variable
with a distribution function that depends on
the current state of the environment. Thus,
in this model, demands are independent and
identically distributed as long as the envi-
ronment’s state remains the same. Aware of
the complexity of the analysis, the authors
concentrate on finding a single optimal
ordering policy irrespective of the state of the

environment. Song and Zipkin [17] study the
continuous-time problem where the demand
process is a Markov-modulated Poisson
process (MMPP). In such a process, demands
arrive as a Poisson process with demand
rate changing according to a Markov chain.
They show that the optimal ordering policy
is of state-dependent (s, S)-type policy when
there is a fixed ordering cost in addition
to the linear cost (see also [18]). Treharne
and Sox [19] analyze the same model when
the current state of the environment is not
observable. They give heuristics and present
computational results. Without assuming a
Markovian structure on the environment,
Morton and Pentico [20] study the finite hori-
zon, zero lead time, nonstationary problem,
and derive upper and lower near-myopic
bounds. They assume that demands in
successive periods are independent but not
necessarily identically distributed. They
develop a number of heuristics and show
that the best near-myopic heuristic is robust.
Anupindi et al. [21] studying the stationary
lead-time problem, obtain near-myopic
bounds and give heuristics. They show that
the average error increases with increase
in variance of the lead-time distribution.
Bollapragada and Rao [22] examine a
single-product, nonstationary inventory
problem with both supply and demand
uncertainty, capacity limits on ordering
quantities, and service-level requirements.
A scenario-based stochastic program for the
static, finite-horizon problem, is presented
to determine replenishment orders over the
horizon. A heuristic based on the first two
moments of the random variables and a
normal approximation is proposed.

Other than on Markov-modulated struc-
tures, there are a few studies in the area
of correlated demands. In these studies, it
is assumed that the demand is correlated
between products as well as time periods.
Although it is very difficult to obtain analyti-
cal solutions under correlated demands, it is
worth studying correlation since it tells some-
thing about the new information which is
observed every period. Ray [23] studies AR(1)
and MA(1) demand models under stochastic
lead times. By writing the moment-
generating function of lead-time demand
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in terms of demand variance—covariance
matrix, and the lead-time distribution, he
obtains the first two moments of the lead-time
demand. These moments are then utilized in
computing the reorder level that will provide
a specified service level [24]. Johnson and
Thompson [25] consider a single product,
periodic-review system under stationary
and nonstationary demand processes with
no fixed cost. There are linear holding and
shortage costs and the deliveries are instan-
taneous. They show that under some addi-
tional assumptions on the demand process,
the optimal policies are myopic. Miller [26]
introduces a multiplicative AR(1)-type uncer-
tainty on the demand process and shows
the optimality of myopic base-stock policies.
Lovejoy [27], assuming a more general
dependent demand structure, gives condi-
tions under which the optimal replenishment
policy is myopic. In production/inventory
systems, a certain amount of information
becomes available as time advances from one
period to the next. It is important to incorpo-
rate this available information into the plan-
ning decisions of the system. This task can be
achieved by means of forecast revisions that
include correlation and evolve through time.
Charnes et al. [28] consider a periodic-review
inventory replenishment model with an
order-up-to policy for the case of determin-
istic lead times and a covariance-stationary
stochastic demand process. A method is
derived for setting the inventory safety
stock to achieve an exact desired stock-out
probability when the autocovariance function
for Gaussian demand is known. Graves [29]
considers a special nonstationary demand
structure, where the demand follows an
integrated moving average (ARIMA (0, 1, 1))
process. For this demand process, the optimal
order-up-to level is characterized and impli-
cations are discussed. Urban [30] analyzes
the effect of autocorrelated demand to deter-
mine reorder levels. Specifically, first-order
autoregressive and moving average (ARMA)
demand processes are examined. Finally,
considering nonstationary, correlated and
evolving stochastic demands, Levi et al.
[31] provide an approximation algorithm to
obtain computationally efficient policies with
constant worst-case performance guarantees.

Another group of studies that can be
placed in this category are models with inven-
tory and/or backorder-dependent demand
structures. Inventory dependent demand is
a special case of the general nonstationary
demand model; within this category, the
backorder-dependent demand structure has
attracted some attention, as it is frequently
observed in practice. Argon et al. [32] propose
a single item, periodic-review model to inves-
tigate the effects of changes in the demand
process that occur after shortage realiza-
tions. They investigate a system where the
demands in successive periods are determin-
istic, but the level is affected by the backorder
realizations. Urban [33] develops a periodic-
review model with products that have
autocorrelated demand, as well as demands
dependent on the amount of inventory
displayed to the customer. Urban [34] gives
a comprehensive review of inventory models
with inventory-level-dependent demand.

Single/Multi-ltem Multiple Locations with
Correlated Demand

In multilocation problems, demand interac-
tions among the locations can be modeled
using correlation structures. The work by
Federgruen and Zipkin [35] is one of the ini-
tial studies that consider demand correlation
across locations. They approach the periodic-
review problem via dynamic programming
to provide results in line with Clark and
Scarf [36]. Erkip et al. [37] investigate the
single-warehouse, n-retailer, multiechelon
supply-chain model by Eppen and Schrage
[38], and extend the results to the case
where demand is correlated across locations
as well as through time. The extension of
the model to multiple items is possible, as
long as the correlation structure is known.
Closed-form expressions are obtained for
safety stock values. Gilbert [39] presents a
multistage supply-chain model that is based
on the ARIMA time series models. Given an
ARIMA model of consumer demand and the
lead times at each stage, it is shown that
the orders and inventories at each stage
also follow ARIMA models, and closed-form
expressions for these models are obtained.
Graves and Willems [40] consider a single-
product problem with a short life cycle. Given
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a short product life cycle, product demand
is increasingly difficult to forecast and is
never really stationary because the demand
rate evolves over the life of the product. The
problem of placing strategic safety stocks
with minimum cost is studied. They extend
previous results for stationary demand to
the case of nonstationary demand.

Another line of research within the mul-
tiechelon inventory systems that consider
demand correlations across the items is the
research on postponement. Several research-
ers study the benefits of product and process
design that calls for delaying the differenti-
ation of products; in other words, defer the
stage after which the products assume their
unique identities. Note that the end prod-
ucts have correlated demands, and hence
aggregating them in manufacturing will help
reduce the expected costs. Lee and Tang [41]
develop a simple model that captures the
costs and benefits associated with the use
of product differentiation issues and focus
on products having only one point of differ-
entiation. Garg and Tang [42] extend these
results to product families which have sev-
eral points of differentiation. The analysis
indicates that demand correlations in addi-
tion to some other factors play an important
role in determining which point of differentia-
tion should be delayed. Aviv and Federgruen
[43] characterize the benefits of delayed dif-
ferentiation and quick response programs
when sales forecasts are updated over time.
They consider more general settings, where
parameters of the demand distributions fail
to be known with accuracy or where consecu-
tive demands are correlated.

Another stream of models that are of
interest is models with advance demand
information (ADI). Among many recent
articles, we summarize a few. DeCroix
and Mookerjee [44] study a periodic-review
problem in which there is an option of pur-
chasing advance demand information at the
beginning of each period. Gallego and Ozer
[45] model ADI through a vector of future
demands and show the optimality of a state-
dependent order-up-to policy. Contrary to
assuming that advance demand information
is always known, Tan et al. [46] investigate
a periodic-review inventory policy with

stochastic demand and stochastic advance
demand information. In this model, each
signal of advance demand can be treated as a
potential demand. The evolution of the ADI is
modeled as a Markov chain. Finally, Tan [47]
considers the demand-forecasting problem in
a business-to-business environment, where
some customers provide information on their
future orders, that are subject to change.
The inaccurate information is used to specify
a metric that influences forecasting.

EVOLVING FORECASTS THROUGH TIME

Introducing updating procedures for fore-
casting brings the Bayesian approaches into
picture. There are a number of inventory
problems that incorporates the Bayesian
approach in decision making. There are
two types of approaches: one assumes fully
observable demand and the other, partially
observable demand. Scarf [48], Azoury [49],
Eppen and Iyer [50], Hill [51,52], among oth-
ers, have assumed fully observable demand.
For example, Lariviere and Porteus [53], as
an example, considered Bayesian updating
with partially observed sales. There are a
number of studies that consider the notion
of quick response, and hence apply Bayesian
updates of forecasts to planning problems.
As an example, Milner and Kouvelis [54]
propose a single-period inventory modeling
framework, with two ordering opportunities.
The second order reacts to updated demand
information and potentially capitalizes on
supply-chain flexibility. The authors analyze
the total inventory cost of a firm for alternate
demand types: the standard assumption
of independent demand over the period,
fashion-driven innovative products through
a Bayesian model, and innovative products
with evolving demand through a Martingale
process (see the section titled “Martingales”
in this encyclopedia). The three demand
processes exhibit very different behaviors
with respect to the value of the alternate
forms of flexibility.

Modeling the evolution of forecasting has
been studied in the literature by several
researchers. Graves et al. [55] and Heath and
Jackson [56] suggest a general descriptive
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model that accommodates simultaneous evo-
lution of demand for many time periods and
captures correlations between products and
time periods, which is named as the Mar-
tingale model of forecast evolution (MMFE).
They argue that the MMFE approach is pre-
ferred to a direct time-series approach since
it can capture the potential impact of expert
judgment other than past data information.
Below, we give a brief description of the
model.

Consider a multi-item environment. Let
D), denote a forecast vector for item j in
period n. We assume that there are J items
and the forecasts are available for M periods.
Hence,

D, = (dy

nonti ’dil,n+M’ W, ) J
where d/, , is the demand realization for item
Jin period n, dfln 1 18 the demand forecast for
period (n + i) made at period n. It is assumed
that the periods beyond the forecast horizon
have a demand forecast of 1/ (stationary).
The evolution of demand forecasts from
one period to the next can be modeled accord-
ing to either an additive evolution model or
a multiplicative one. Here we present the
MMFE method through the additive model.
Accordingly, the new forecast for the (n + i)th
period demand can be written in terms of the
previous forecast and an error term as

d]rz+1,n+1 = d]n,n+1 + n+1,1
Britnse =Dy o T s

. i
d]n+1,n+M+1 =W+ 62+1,M+1’

where for n>1, &, = (62,1,62,2, ) "’62,M+1)
is the vector that represents the evolution
of demands and forecasts from period n —
1 to n. Note that the first component 6{1,1
is the one-step ahead forecast error. The
&, vectors are assumed to be independent,
identically distributed, multivariate normal
random vectors with mean 0. The demand
forecast update equation states that as we
get closer to a demand period, say period

(n+1), by updating the forecasts for this
period successively, we reduce the variabil-
ity of forecast errors. These assumptions also
imply that the i-th step-ahead demand fore-
cast for any j, d]n’n +i» 1s a martingale, and it
is the conditional expectation of the (n + i)-
th period demand, given the history up to
time n [55,56]. The definition of €, enables
us to allow for correlation among future fore-
casts of an item, as well as cross-correlations
among forecasts of different items for a given
period, n.

The above structure holds under the
assumptions stated by Heath and Jackson
[56]. The methodology suggested by MMFE
is useful, as it also incorporates consistent
knowledge on the forecasts. Many extensions
or analyses regarding MMFE are available.
In the remaining part of this section we
summarize some of these studies, which
also have a relation to or application in the
supply chain area.

Gilli [57] considers a single-item pro-
duction/inventory system that incorporates
forecasts into planning decisions. He uses
an additive forecast evolution model, which
is a special case of MMFE and is able to
capture the structure of dependent and
nonstationary demand. He assumes that the
production capacity is limited and unsatisfied
demand is backlogged. As a benchmark, he
considers a standard inventory model, which
assumes the same distributional properties
of demand. The suggested model yields lower
expected costs and inventory levels when
compared to a standard inventory model. In
a similar study, Gilli [58] investigates a
two-echelon allocation model consisting of a
depot and several retailers, again integra-
ting forecast revisions. The depot does not
hold any inventory and unsatisfied demand
is backlogged. He compares this system to
a standard allocation model. The standard
model results in higher order-up-to levels
and higher system costs. Toktay and Wein
[59] study a capacitated single-item make-
to-stock environment facing a stationary,
correlated demand process. They utilize
the MMFE approach to generate forecast
revisions. The forecast updates are then
incorporated into the system to obtain
approximate results for the base-stock level
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that yields minimum expected inventory
holding and backorder costs. Iida and
Zipkin [60] propose a dynamic inventory
model with the MMFE model. As a special
case, it includes the ARMA demand model,
represented by MMFE. They combine the
MMFE with a linear programming model
of production/distribution system in order
to find an economical safety factor level
and quantify the effects of forecast error
on the total system cost. Lu et al. [61], also
considering the MMFE model of demand
forecast evolution in a periodic-review inven-
tory model, develop bounds on the optimal
base-stock levels as was done in lida and
Zipkin [60]. In addition, they provide bounds
on the cost error of any heuristic with respect
to the optimal policy, which is computation-
ally intractable to evaluate. They give the
necessary and sufficient conditions for the
optimality of myopic policies.

Dong and Lee [62] revisit the serial multi-
echelon inventory system of Clark and show
that the structure of the optimal stocking
policy of Clark and Scarf [36] holds under
time-correlated demand processes using an
MMFE. Then, the authors extend the approx-
imation to an autoregressive demand model.

Aviv [63] considers a supply chain in which
the underlying demand process, possibly
evolves according to a vector autoregressive
time series. The author proposes an adaptive
inventory replenishment policy that utilizes
the Kalman filter technique (see Forecast-
ing: State-Space Models and Kalman
Filter Estimation).

FORECASTING PROCEDURES FOR
CORRELATED DEMAND AND APPLICATIONS

A typical forecasting process involves ana-
lyzing historical data. Historical data may
exhibit trends, seasonal variations, as well
as correlations. Other factors may come into
the picture such as impact of other products
or services in the market on the demand
of the product being forecasted. Typically,
the performance of the forecasting process
is evaluated on the basis of the relative
error, that is the percentage difference of
the actual from its forecasted value, or the
mean-squared forecast error.

Time series analysis techniques are
utilized to carry out the forecasting process.
Demand for each product is forecasted over
a planning horizon in such a way that the
mean-squared forecast error is minimized.
Standard time series analysis techniques
consider correlation structures over time,
but are not effective when there are multiple
items with correlated demand.

One way of avoiding forecasting demands
of multiple items with cross-correlation is to
aggregate the items. On the other hand, there
is a need to forecast at the item level, as well.
The following is the question here: Is it better
to forecast the aggregate (and hence utilize
a top-down approach) and then disaggregate,
or to forecast the individual items directly
(and hence utilize a bottom-up approach),
and then the total? In any specific applica-
tion, it will be hard to say which one would be
better, unless ample data is available to sup-
port both approaches. Of course, the general
understanding and approach are to utilize,
as much as possible, the possibilities brought
by the available data. Note that there are
examples of both; consider Zhou et al. [64],
where a top-down approach is utilized, and
Chen et al. [65], which presents different (but
not independent) representations for a two-
item forecasting problem—an example of the
bottom-up strategy.

In case we only need to consider autocorre-
lation, demand data can be modeled either as
a stationary ARMA process or a nonstation-
ary ARIMA process with other controllable
and uncontrollable inputs [4—8]. Stationary
models keep their distributional behavior in
equilibrium around a constant mean. On the
other hand, the nonstationary, ARIMA, mod-
els have no constant mean level over time.
Nonstationary data quite often arise in indus-
trial forecasting. Demand processes could
also be modified to incorporate the effects of
external factors such as economic, political,
and geographic conditions. For multi-item
systems with cross-correlation, multivariate
time series models [66] such as a vector
ARMA(p,q) could be utilized.

Aviv [63], considering a two-stage supply
chain, employs state-space methods for mode-
ling demand process as vector AR(1)(VAR(1))
time series. The minimum mean-squared
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error (MMSE) estimates of the demand can
then be obtained recursively via the Kalman
filter (see Forecasting: State-Space Mod-
els and Kalman Filter Estimation) as new
observations are included over time. These
observations may not include full demand
information. The adaptive replenishments
follow a base-stock policy that depends on
the aggregate demand estimate during lead
time.

In order to forecast intermittent demand,
Croston [67] presents two separate exponen-
tial smoothing forecasts, one on the demand
size and the other on the demand inter-
arrival times. Several studies demonstrate
that Croston’s method performs better than
some competing approaches [68,69]. Shen-
stone and Hyndman [70] attempt to iden-
tify stochastic models that underlie Croston’s
method in order to obtain confidence intervals
for the forecasts. One such model assumes
a nonstationary ARIMA(0,1,1) time series
model for both the demand size and the
demand interarrival times.

There are a few studies that combine fore-
casting performance with inventory perfor-
mance. The difficulty lies in creating bench-
marks, and we believe that more work in this
area is needed.

One example is by Sani and Kingsman
[69] who compare various inventory replen-
ishment heuristics of (s,S) type in addition
to the comparison of forecasting methods for
a low demand item.

Chen et al. [65] report another study that
combines forecasting and inventory control.
The authors use a bivariate VAR(1) time-
series model to investigate the effects of
aggregating two interrelated demands. The
paper further explores the properties of the
aggregated time series and provides guide-
lines for practitioners to determine proper
aggregation and forecasting approaches. A
method is proposed to estimate the parame-
ters of the demand model.

Other examples are from the production
planning environments where forecast pro-
cedures are integrated with the planning
procedures. Heath and Jackson [56] combine
the MMFE with a linear programming model
of production/distribution system in order to

find an economic safety stock level and quan-
tify the effects of forecast error on the total
system cost. A similar study is carried out
by Kayhan et al. [71], where the application
of MMFE to an industrial case is consid-
ered. Procedures to set safety stocks for an
LP (linear programming)-based production
planning model are proposed utilizing fore-
cast error correlations across items and time
modeled by MMFE.

CONCLUSIONS

In this article, we consider single-/multi-
item supply chains under stationary or
nonstationary correlated demand. We review
inventory approaches in order to establish
the demand-forecasting requirements. We
also discuss the notion of evolving forecasts,
including MMFE. We summarize various
approaches for forecasting the demand of
such inventory systems.

Forecasting is a very important tool
for supply chains. Customer behavior and
retail performance are factors affecting the
demand for products. More comprehensive
approaches for forecasting are needed that
will consider all aspects of demand. On
the other hand, we observe that there are
still challenges ahead in achieving well-
performing plans in a dynamically changing,
uncertain environment, for more classical
forecasting.
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