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Abstract

We present continuous and discrete time linear state-space models and
explain the Kalman filter algorithm that is used to obtain the one-step-
ahead state estimations recursively. Adaptive and nonlinear state esti-
mations, as well as parameter estimation, with a Kalman filter are also
briefly described.

Introduction

Humans observe their environment, learn its properties, and by forecasting the
future events, they make plans to influence future outcomes to their benefit.
There are risks that those plans, for which actions are based, are not good at
all. Hence, it is desirable to set up expectations, based on the detailed analysis
of empirical evidence and sound knowledge in order to reduce the risk of future
regrets.

Forecasting methods to set up reasonable expectations for the future events
are mainly based on the properties of relevant historical data (time-series) as-
suming that the environment will not change significantly. Forecasting models
express relationships between what the past evidence shows and what could
possibly take place in the future.

System models are useful concepts to represent relations, interactions and
to build up tools for predicting the collective behaviour of entities. An input-
output model expresses the behaviour of an open system that interacts with its
environment, in a causal manner (the past and the present of the system shape
its future), which takes from its environment (input, or stimulus) and gives to
its environment (output, or response). If one is interested in the behaviour of an
observable (measurable) open system, then one should observe the system for
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some time for stimulus-response relations and construct an input-output model
that suitably fits to these observations.

A similar causal model (local in time) is the state-space representation of
an open system, where the underlying system’s behaviour is represented by its
state and its response to an input at that state. The collection of all possible
(admissible) states of a system is known as the state-space [1, 15, 7]. In order
to predict the future states of a dynamic system, with minimum mean square
error, we can design a recursive predictor based on the current estimate and
the current filtered estimation error. The best estimate of the state of a linear
stochastic system from partial observations is known as Kalman filter [11, 12]
(a.k.a. Kalman-Bucy filter).

Previous work on this subject has been done by Kolmogorov [14], Wiener [24],
Kalman [11], Bucy [13] and many others in the last century. We can also men-
tion closely related work by Wald [22], and Robbins and Monro [20], where
the stochastic approximation algorithm developed in [20] may be utilized for
parameter estimation.

Stationary and nonstationary time series models such as autoregressive (AR),
moving average (MA), mixed AR and MA (ARMA), autoregressive integrated
moving average (ARIMA), ARMA with external input (ARMAX), can be trans-
lated into state-space models [3, 4, 7, 15, 10], thus benefit from the recursive
prediction algorithm. Multivariate time series are especially suitable to state-
space representation. For example, Aviv [2] uses state-space models and Kalman
filter in demand estimation and inventory control. Bayesian estimation can also
exploit the Kalman filtering methodology, as discussed in [19, 23].

We introduce the general state-space model in the next section, and then fo-
cus on linear Gaussian model in Section 2. We describe Kalman filter iterations
in Section 3. The adaptive and nonlinear generalizations follow as Sections 4 and
5, respectively. The parameter estimation can also be approached by utilizing
a Kalman filter, as presented in Section 6.

1 State-Space Structure

A mathematical model of a dynamic system with multiple inputs and outputs
can be constructed as follows. Let xt be the multidimensional (vector) state
of the system, X be the state-space, ut be an observable multidimensional
input to the system and yt be an observable multidimensional output of the
system, at time t. Also, let vt and wt denote multidimensional random noise
processes, at time t. Assume xt+1 = ft(xt, ut, vt), yt = gt(xt, wt), where f, g
are measurable functions at all time. By using this simple model, we try to
capture and express the relationships between the state of the system, the in-
put that drives it, and the output of the system. The k-step ahead state,
xt+k, depends upon the present state, xt, as well as the future inputs, such
that, xt+k = ft+k−1(ft+k−2(...(ft(xt, ut, vt))...), ut+k−1, vt+k−1). This recursion
is the basis for state transitions from period t to k-step ahead period t+ k.
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2 Linear-Gaussian Model

In this section, we will consider linear state-space models operating in continuous
or discrete time. Let the initial (starting) state be denoted as x(t0) for the
continous and x(k0) for the discrete time process.

Continuous-Time Model: Assume that the state dynamics, or evolution is as
follows,

d

dt
x(t) = Atx(t) +Btu(t) +Gtv(t).

Also the observed output, or response is given by

y(t) = Ctx(t) + w(t),

where x(t), u(t), y(t) are finite real vectors, At, Bt, Ct, Gt are real matrices with
proper dimensions and t ≥ t0 is a real number.

The noise processes {v(t)}, {w(t)} are independent Gaussian random vec-
tors, with zero means and finite variances, conditionally independent of x(t)
and u(t). Let {v(t)} be a white Gaussian stochastic process with covariance
E[v(t)vT (t − �)] = Q(t)�(t − �), and {w(t)} be a white Gaussian stochastic
process with covariance E[w(t)wT (t− �)] = R(t)�(t− �), where �(.) is the Kro-
necker delta function, i.e. its value is one when its argument is zero, its value
is zero otherwise. Since these stochastic processes are uncorrelated, we have
E[v(t)wT (t)] = E[x(0)vT (t)] = E[x(0)wT (t)] = E[u(t)vT (t)] = E[u(t)wT (t)] =
0.

Discrete-Time Model: Assume that the state dynamics is given by

x(k + 1) = Akx(k) +Bku(k) +Gkv(k),

and the observation equation is

y(k) = Ckx(k) + w(k),

where x(k), u(k), y(k) are finite real vectors, Ak, Bk, Ck, Gk are real matrices
with proper dimensions and k ≥ k0 is an integer.

The noise processes {v(k)}, {w(k)} are independent Gaussian random vec-
tors, with zero means and finite variances, conditionally independent of x(k) and
u(k), and temporally uncorrelated, i.e. E[v(k)vT (j)] = Q(k)�kj , E[w(k)wT (j)] =
R(k)�kj , where �kj is the Kronecker delta, i.e. its value is one when k = j, and
zero otherwise.

In these models, the system’s evolution can be represented by state transi-
tion,

x(t∣t0) = Φ(t, t0)xt0 +

∫ t

t0

Φ(t, s)B(s)u(s)ds,

where Φ(., .) is the state-transition function (a matrix, or a dynamic semi-group
operator on the state-space), x(t0) is the initial state of the system and integral
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is a summation operator in the Lebesgue sense [17] that operates both in the
continuous-time and in the discrete-time, componentwise.

Note that for linear systems, the initial state is a critical point for the future
trajectory of the system. On the other hand, if the system is not linear, then
the initial state of the system is not sufficient for the system’s behaviour, sys-
tem’s trajectories would depend upon other factors as well. Many trajectories
(perhaps infinitely many) from the same initial state are possible. There are
two essential questions:

Q1: Is the system observable, i.e. is it possible to determine the states of the
system {x(s)∣t0 ≤ s < t}, from the observations of y(s) and u(s), for s ∈ [t0, t)?

Q2: Is the system controllable, i.e. is it possible to drive the system into a
desired state x(tf ), from an initial state x(t0), by selecting a stream of feasible
inputs (stimuli) {u(s)∣t0 ≤ s ≤ tf}, in a finite interval of time [t0, tf ]?

For the discrete-time system dynamics, we replace t, t0, tf by k, k0, kf , respec-
tively.

The duality of these questions, as well as the state-space formulation of linear
systems for predicting and controlling the system’s behavior were explained by
many researchers, for one particular approach see [12].

The first question is relevant to forecasting, or estimating the states of a lin-
ear dynamical system, and can be approached by the Wiener filter [24]. Wiener
filter provides the best estimates (in the sense of minimum mean square error [5])
of the Markovian signals x(t), by using a set of observations {y(s), s ∈ [t0, t]}.
State estimates, x̂(s∣t) may be obtained for prediction, or, x̂(t∣t) := x̂(t), for
filtering when s > t > t0. The Wiener filter is based on a function, ℎ(t), such
that its convolution with the past observations, ℎ ★ y, would generate the state
estimator,

x̂(t) =

∫ ∞
0

ℎ(s)y(t− s)ds.

The function, ℎ(t) is selected to minimize the expected squared estimation error,

E[(x(t)− x̂(t))2] = E[x2(t)]− 2E[x̂(t)x(t)] + E[x̂2(t)].

Since E[x̂2(t)] =
∫∞

0
ℎ(s)ds

∫∞
0
ℎ(�)Ryy(t, �)d� and E[x̂(t)x(t)] =∫∞

0
ℎ(s)Rxy(t, s)ds, where Ryy is the autocorrelation function of the obser-

vations y(t) and Rxy is the correlation function of x(t) and y(t), then one can
introduce an optimal ℎ(t), say ℎ∗(t), such that ℎ∗(t) = ℎ(t)+�w(t), where w(t) is

a perturbation and � is a scaling parameter. Consequently, ∂E[(x(t)−x̂(t))2]
∂� = 0 is

required for the expected minimum error square. Hence, the expected minimum
mean square error will be achieved when ℎ∗ satisfies,∫ ∞

0

ℎ∗(�)Ryy(t, �)d� = Rxy(t),

which is known as the Wiener-Hopf equation, and its solution for ℎ∗ yields the
best linear estimator for the state x(t) [24].
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3 Kalman Filter for State Estimation

The Kalman filter, a.k.a. Kalman-Bucy filter, is a sequential estimator for the
states of a stationary linear dynamical system and it is based on the Wiener
filter, subject to a white Gaussian noise. Without loss of generality, we can
set the initial time t0 to be 0. The usual Kalman filter formulation, such as
given in [21], for a known distribution of the initial state, x(0), is carried on the
following simplified state-space equations. Note that, the control component is
not included in this model, thus one is only concerned with the state estimation
problem.

Continuous Time: d
dtx(t) = Atx(t) +Gtv(t) and y(t) = Ctx(t) +w(t), for t ≥ 0.

Discrete Time: x(k + 1) = Akx(k) + Gkv(k) and y(k) = Ckx(k) + w(k), for
k ≥ 0.

The Kalman filter first estimates the state of the system, then updates the
estimation process, according to the estimation error that manifests itself in the
difference of actual observation and the estimated observation which is based on
the state estimation. Hence, these two stages of estimation-correction process
repeats itself for the entire forecasting horizon. In our model, noises and states
are independent Gaussian random processes with finite second moments. Also
let E[x(0)] = x̄(0) and V ar(x(0)) = P0.

For continuous time case: Let x̂(s∣t) be the estimate of x(s), given all y(�), for
0 ≤ � ≤ t and s > t ≥ 0. Also, let e(s∣t) = x(s)− x̂(s∣t) be the estimation error,
at time s.

Therefore, one must find the linear filterK(t, �) such that x̂(s∣t) =
∫ t

0
K(s, �)y(�)d� ,

where x̂(0∣0) = x̄(0). Also, the mean squared error, E[∣∣e(s∣t)∣∣2] is minimized
by this filter, where ∣∣e(s∣t)∣∣ denotes the Euclidean norm of the error vector.

If this filter, K(t, �), satisfies the Wiener-Hopf equation, then x̂(s∣t) will be
an unbiased minimum variance estimator of x(s), for the proof see [13]. Hence,
this filter will satisfy,

d

dt
x̂(t∣t) =

∫ t

0

∂

∂t
K(t, �)y(�)d� +K(t, t)y(t),

and
d

dt
x̂(t∣t) = Atx̂(t∣t) +K(t, t)[y(t)− Ctx̂(t∣t)],

where x̂(0∣0) = x̄(0). The estimation error, e(t∣t) = x(t)− x̂(t∣t), will be subject
to the following evolution,

d

dt
e(t∣t) = [At −K(t, t)Ct]e(t∣t)−Gtv(t)−K(t, t)w(t).

Let the covariance of the estimation error be E[e(t∣0)eT (t∣0)] = P (t), and P (0) =
P0.
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In order to obtain the least square error estimator, the estimation error,
e(t∣t), must be orthogonal to the state estimate, x̂(t∣t), by the Pythagoras the-
orem. Hence, the orthogonal projection of the error vector on the state-space
would give, E[e(t∣t)x̂(t∣�)] = 0, for t ≥ � ≥ 0.

Thus, by solving for the above estimation error differential equation, we
obtain the evalution of the error function as follows;

e(t∣t) = Φ(t, 0)e(0∣0) +

∫ t

0

Φ(t, �)[K(�, �)w(�)−G�v(�)]d�,

where Φ(., .) denotes the transition function for e. Therefore,

P (t) = Φ(t, 0)E[e(0∣0)eT (0∣0)]ΦT (t, 0)

+

∫ t

0

∫ t

0

Φ(t, �)[K(�, �)E[w(�)wT (s)]]ΦT (t, s)dsd�

+

∫ t

0

ds

∫ t

0

Φ(t, �)G�E[v(�)vT (s)]GTs ΦT (t, �)d�.

By taking the time derivative of the above function, we have the following
Riccati equation for the covariance of the estimation error,

d

dt
P (t) = GtQ(t)GTt +AtP (t) + P (t)ATt − P (t)CTt R

−1(t)CtP (t),

where, P (t)CTt = E[e(t∣t)eT (t∣t)]CTt = K(t, t)R(t). Hence, this yields K(t, t) =
P (t)CTt R

−1(t).
In summary, the Kalman filter is defined by the following equations, for

t ≥ 0:

d
dt x̂(t∣t) = Atx̂(t∣t) +K(t, t)[y(t)− Ctx̂(t∣t)], where x̂(0∣0) = x̄(0),

K(t, t) = P (t)CTt R
−1(t),

d
dtP (t) = AtP (t) + P (t)ATt +GtQ(t)GTt − P (t)CTt R

−1(t)CtP (t).

The forecasting of future states can be done by x̂(s∣t) = Φ(s, t)x̂(t∣t), for s >
t > 0 and by using the state transition function Φ(., .).

For discrete time case: Let x̂(k∣m) = E[x(k)∣y(0), y(1), . . . , y(m)] be the state
estimator and e(k∣m) = x(k) − x̂(k∣m) be the estimation error, for k ≥ m.
The best estimator of states has the minimum mean square estimation error
property, which is obtained by the orthogonal projection of the state estimator
on the observations, with the following Kalman recursions.

x̂(k∣k) = x̂(k∣k−1)+P (k−1)CTk [CkP (k−1)CTk +R(k)]−1(y(k)−Ckx̂(k∣k−1)),

P (k∣k) = P (k − 1)− P (k − 1)CTk [CkP (k − 1)CTk +R(k)]−1CkP (k − 1),

where P (k∣k) = E[e(k∣k)eT (k∣k)]. Also, x̂(k + 1∣k) = Akx̂(k∣k), i.e.,
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x̂(k + 1∣k) = Akx̂(k∣k − 1) + AkP (k − 1)CTk [CkP (k − 1)CTk + R(k)]−1(y(k) −
Ckx̂(k∣k − 1)), and

e(k + 1∣k) = Ake(k∣k − 1) + AkP (k − 1)CTk [CkP (k − 1)CTk + R(k)]−1(y(k) −
Ckx̂(k∣k − 1)−Gkv(k)).

The estimation error covariance, P (k) = E[e(k + 1∣k)eT (k + 1∣k)], i.e.

P (k) = AkP (k−1)ATk−AkP (k−1)CTk [CkP (k−1)CTk +R(k)]−1CkP (k−1)ATk
+ GkQ(k)GTk ,

where, x̂(0∣0) = E[x(0)] and P (0) = V ar(x(0)).
This discrete time Kalman filter is a minimum variance and minimum square

error sequential estimator of the state.
We can construct a predictor, based on this discrete Kalman filter, to forecast

a distant future, x̂(n∣k) =
∏
j=k,...,nAj x̂(k∣k), for n > k > 0.

In this approach, predictor-corrector structure of the Kalman filter is gener-
ating an innovation sequence, y(k)−ŷ(k), which is a zero-mean and independent
stochastic process (based on the maximum likelihood estimation, or, orthogonal
projection method). There are other approaches for optimal state estimators,
such as recursive Bayesian estimators, but when the system is linear and the
noise structure is independent Gaussian, these methods converge to the Kalman
filter [13].

4 Adaptive State Estimation

When there are uncertainties in the system parameters, Kalman filter cannot
provide the state estimation. We can approach to those cases with a Bayesian
construct [16, 23, 19]. Let the parameter vector � is subject to uncertainty,
where the linear system dynamics are as before.

For continuous time:
d
dtx(t) = A(t, �)x(t)+G(t, �)v(t) and y(t) = C(t, �)x(t)+w(t), where v(t) and

w(t) are independent zero mean white Gaussian random vectors with Q(t)�(t)
and R(t)�(t) covariances, respectively. The initial state is an independent Gaus-
sian random vector with mean x̂(0∣0, �) and variance P (0∣0, �).

The system evolution is subject to its unknown parameter vector, � ∈ Ω,
with its prior probability density f(�). Based on the observation data, Yt =
{y(s)∣0 ≤ s ≤ t}, the minimum mean square estimate of the state, x̂(t∣t) =∫

Ω
x̂(t∣t, �)f(�∣Yt)d�, where x̂(t∣t) = E[x(t)∣Yt], x̂(t∣t, �) = E[x(t)∣Yt, �], over the

sample space of the parameter, Ω.
The posterior probability density of the parameter, based on the observa-

tions, would be as follows.
f(�∣Yt) = f(�)exp(−

∫ t
0
x̂(� ∣�, �)CT (�, �)R−1(�)y(�)d�

− 1
2

∫ t
0
∣∣C(�, �)x̂(� ∣�, �)∣∣2R−1(�)d�)exp(−

∫ t
0
ŷT (� ∣�)R−1(�)y(�)d�

− 1
2

∫ t
0
∣∣ŷ(� ∣�)∣∣2R−1(�)d�),

where ŷ(� ∣�) =
∫

Ω
C(�, �)x̂(� ∣�)f(�∣Yt)d� .

The conditional covariance of the state estimation error would be,
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P (t) =

∫
Ω

P (t∣t, �)[x̂(t∣t, �)− x̂(t∣t)][x̂(t∣t, �)− x̂(t, t)]T f(�∣Yt)d�,

where P (t∣t, �) = E[[x(t)− x̂(t∣t, �)][x(t)− x̂(t∣t, �)]T ∣Yt, �], for all � ∈ Ω.
The same procedure is also suitable for the discrete time estimations, as

follows.
For discrete time:
x(k + 1) = A(k, �)x(k) + v(k) and y(k) = C(k, �)x(k) + w(k), where v(k),

w(k) are independent zero mean Gaussian vectors with covariances Q(k)�kj and
R(k)�kj respectively.

The initial state is an independent random vector with mean x̂(0∣0, �) and
covariance P (0∣0, �). Let the unknown parameter has a prior probability den-
sity f(�). Hence, based on a realization of past observations, Yk = {y(j)∣j =
1, 2, . . . , k}, the minimum mean square error state estimate would be x̂(k∣k) =∫

Ω
x̂(k∣k, �)f(�∣Yk)d�, where x̂(k∣k) = E[x(k)∣Yk] and x̂(k∣k, �) = E[x(k)∣Yk, �].
The posterior probability of the parameter, based on the observation data,
f(�∣Yk) = [∣Pz(k∣k − 1, �)∣− 1

2 exp(− 1
2 ∣∣y(k) − C(k, �)x̂(k∣k, �)∣∣2P−1

z (k∣k −
1, �))f(�∣Yk−1)]/[

∫
Ω
f(�∣Yk−1)∣Pz(k∣k − 1, �)∣− 1

2 ∣∣y(k)− C(k, �)x̂(k∣k, �)∣∣2P−1
z (

k∣k − 1, �)d�],
where y(k) − C(k, �)x̂(k∣k, �) is a conditional white noise process with co-

variance Pz(k∣k − 1, �) = C(k, �)P (k∣k, �)CT (k, �) +R(k).
Moreover, the state estimation error covariance would be
P (k∣Yk) =

∫
Ω

(P (k∣k, �) + [x̂(k∣k, �)− x̂(k∣k)][x̂(k∣k, �)− x̂(k∣k)]T )f(�∣Yk)d�.

5 Nonlinear State Estimation

The state estimation for nonlinear systems is very difficult, to say the least,
unlike the linear systems. Under suitable conditions, a linearization could be
an aproximation of a nonlinear system’s representation, then we may employ
the Kalman filter approach, but always be mindful of the divergence of the
approximation from the actual system.

Let us modify our state-space model for the nonlinear structure, as follow.

1. d
dtx(t) = g(x, t) + v(t) and y(t) = ℎ(x, t) + w(t), for continuous time,

2. x(t+ 1) = g(x, k) + v(k) and y(k) = ℎ(x, k) + w(k), for discrete time.

where x, y are state and output (observation) vectors, also let g, ℎ are differ-
entiable vector functions, representing the system dynamics (evolution), and
v, w are zero-mean independent Gaussian random vectors with time-varying
covariances, Q and R, respectively.

1) Continuous time: At time t, the first-order Taylor series expansion for g
and ℎ, around the estimated state, x̂, would be as follows.

g(x, t) = g(x̂, t) +A(x̂, t)(x− x̂) + �
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and
ℎ(x, t) = ℎ(x̂, t) + C(x̂, t)(x− x̂) + ",

where �, " are the approximation errors, such that

A(x̂, t) =

⎛⎜⎝
∂g1
∂x1

. . . ∂g1∂xn

...
∂gn
∂x1

. . . ∂gn∂xn

⎞⎟⎠ , C(x̂, t) =

⎛⎜⎝
∂ℎ1

∂x1
. . . ∂ℎ1

∂xn

...
∂ℎm

∂x1
. . . ∂ℎm

∂xn

⎞⎟⎠ ,

and Hi(x̂, t) =

⎛⎜⎜⎝
∂2ℎi

∂x2
1
. . . ∂2ℎi

∂x1∂xn

...
∂2ℎi

∂xn∂x1
. . . ∂

2ℎi

∂x2
n

⎞⎟⎟⎠ , for i = 1, . . . ,m.

Here, the functions g and ℎ are evaluated at x̂(t).
Then the extended Kalman filter for the state estimation would be as follows

[6].

d
dt x̂(t) = g(x̂, t) + P̂ (t)C(x̂, t)R−1(t)[y(t)− ℎ(x̂, t)],

d
dt P̂ (t) = P̂ (t)AT (x̂, t)P̂ (t) +Q(t)− P̂ (t)CT (x̂, t)R−1(t)C(x̂, t)P̂ (t) +∑
i=1,...,m P̂ (t)Hi(x̂, t)I[i]R−1(t)[y(t) − ℎ(x̂, t)], where I[i] is the ith row of the

identity matrix I.

2) Discrete time:
The extended Kalman filter construct can be carried out as follows,

x̂(k + 1∣k + 1) = g(x̂(k∣k)) + P̂ (k + 1∣k + 1)CT (x̂, k + 1)R−1(k + 1)[y(k + 1)−
C(x̂, k + 1)g(x̂(k∣k))],

P̂ (k + 1∣k + 1) = [R(k) + CT (x̂, k + 1)P (k + 1∣k)C(x̂, k + 1)]−1P̂ (k + 1∣k),

P̂ (k + 1∣k) = A(x̂, k)P̂ (k∣k)AT (x̂, k) +Q(k).

There are methods to improve the convergency of extended Kalman filter [21],
[18] and apply these improved extended Kalman filters to adaptive controller
design [8], [9].

The linearization could also be made around a reference (nominal) trajectory,
x̄(t), with a given x̄(0), such that d

dt x̄(t) = g(x̄(t), t), for t ≥ 0.
Also, let Δx(t) = x(t) − x̄(t) be a Gaussian perturbation from the ref-

erence trajectory. Hence, dΔx(t)
dt = g(x(t), t) − g(x̄(t), t) + v(t). Therefore,

the first-order Taylor series approximation would be, g(x(t), t) − g(x̄(t), t) =
A(x̄(0), t)Δx(t), where A(x̄(0), t) is evaluated along the reference trajectory,
dΔx(t)
dt = A(x̄(0), t)Δx(t) + v(t). Hence, the Kalman filter approach could be

used with x̂(0) = x̄(0).
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6 Parameter Estimation

We can estimate the parameter, together with the state of a system, by using
the above constructed extended Kalman filter structure. Let the state vector x
be augmented with the parameter vector �, such that,

z(t) =

(
x(t)
�(t)

)
and V (t) =

(
v(t)

0

)
.

1. d
dtz(t) = g(z, t) + V (t) and y(t) = ℎ(z, t) + w(t), for continuous time,

2. z(t+ 1) = g(z, k) + V (k) and y(k) = ℎ(z, k) + w(k), for discrete time.

A linearization is obtained by the first-order Taylor series expansion, around
the augmented state estimate ẑ. Without loss of generality, in discrete time a
linearized Kalman filter that generates state and parameter estimation would
be as follows,

ẑ(k + 1) = ẑ(k + 1∣k) +K(k + 1)[y(k + 1)− ℎ(ẑ(k + 1∣k), k)], with
ẑ(0∣0) = z(0),

ℎ(ẑ(k + 1∣k), k) = C(k, �̂k)x̂(k + 1∣k),
ẑ(k + 1∣k) = F (k)ẑ(k),
K(k + 1) = P (k + 1∣k + 1)G(k)R−1(k),
P (k + 1∣k + 1) = P (k + 1∣k) − P (k + 1∣k)G(k)[GT (k)P (k + 1∣k)G(k) +

R(k)]−1GT (k)P (k + 1∣k),
P (k + 1∣k) = F (k)P (k∣k)FT (k) + Q(k)G(k)GT (k), where F,G,R,Q are

proper matrices for the augmented state-parameter vector z, and �0 is a priori
information about the parameter.

These methods provide sequential estimation of the state and the parameter
for stationary and linear, or linearized, systems yet they suffer immensely in real
time computations. Divergency is a common problem for linearized models [9],
that is the success of estimation depends upon a very good initial point for the
nominal trajectory and persistent corrections for very well behaved systems.
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