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Abstract

For undiscounted two-person zero-sum communicating stochastic games with finite state and action spaces, a solution
procedure is proposed that exploits the communication property, i.e., working with irreducible games over restricted strategy
spaces. The proposed procedure gives the value of the communicating game with an arbitrarily small error when the value
is independent of the initial state.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Two-person zero-sum communicating stochastic
games considered in this note are played sequentially
under the long-run average payoff criterion (undis-
counted case). A stochastic game is called communi-
cating if it is irreducible under at least one stationary
strategy pair of the players (decision makers). The
scope of this paper is restricted to solving commu-
nicating games under the condition that the game
value is independent of the initial state. Note that,
communicating stochastic games that are unichain
under every stationary strategy pair, form a subclass
of games which satisfy the above condition.
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In [13,9,19], stochastic games with different ergodic
structures are studied from an algorithmic viewpoint
under the long-run average payoff criterion. Hoffman
and Karp [13] propose an iterative algorithm that finds
optimal stationary strategies for an irreducible stochas-
tic game. Algorithms due to Federgruen [9] and Van
der Wal [19] give �-optimal stationary strategies under
some assumptions that imply unichain case or inde-
pendence of the game value from the initial state. For
general stochastic games, Filar et al. [10] give a non-
linear programming formulation for finding the best
stationary strategies with respect to a measure of dis-
tance from optimality.

The communication property is introduced by
Bather [4] for Markov decision processes (MDPs) as
the existence of a policy for every pair of states that
makes one state reachable from the other one. It is
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studied further by Ross and Varadarajan [14,15] and
Baykal-Gürsoy and Ross [5]. The purpose of inves-
tigating the behaviour of communicating MDPs in
the above mentioned studies is to solve certain MDP
problems (MDPs with constraints or nonlinear ob-
jectives) by decomposing the state space into (open
or closed) communicating classes in an hierarchical
manner. The importance of studying communicating
games in this article also arises once the similar hier-
archical decomposition procedure proposed in [2] for
stochastic games is to be employed. An extension of
the communication property is used by Federgruen [8]
for stochastic games. Federgruen imposes a condition
that for any stationary strategy of one player there is
a stationary strategy for the other one that makes the
process irreducible. Thus, the difference between a
stochastic game that satisfies the conditions in [8] and
a communicating stochastic game is that in the latter
one when an arbitrary stationary strategy is assigned
to one player the other player may not have a strat-
egy that makes the process irreducible whereas in the
former case there exists at least one such strategy for
the other player. Hence, Federgruen’s conditions are
more restrictive than a direct adaptation of Bather’s
definition to stochastic games. Under these more re-
strictive conditions, Federgruen [8] shows that there
exist limiting average optimal stationary strategies for
the N-person nonzero-sum games.

To solve undiscounted two-person zero-sum com-
municating stochastic games, we propose to employ
the algorithm in [13] for irreducible games by exploit-
ing the communication property. Concentrating on a
restricted set of feasible stationary strategies such that
the probability of taking any action pair is strictly pos-
itive, a communicating stochastic game behaves as an
irreducible one and Hoffman and Karp’s algorithm
can be applied by incorporating a transformation from
the restricted set of strategies to the original set. With
these changes, under the condition that the value of
the communicating stochastic game is independent of
the initial state, it is shown that the proposed proce-
dure gives value of the communicating game with an
error of � for any � > 0 when the restricted strategy
space is sufficiently large. This procedure could also
be used to obtain the �-optimal stationary policy pair
for both players.

Independently of our work, Evangelista et al. [7]
use a similar approach to show that the stochastic

games with additive reward and additive transition
structure possess �-optimal stationary strategies. This
is a restrictive condition, since it does not hold in gen-
eral. It should be pointed out that restricting the strat-
egy space in order to obtain irreducible games corre-
sponds to perturbing the set of mixed actions slightly.
Some related analyses on the perturbation of Markov
chains with applications to stochastic games are
in [16].

Organization of this note is as follows: In Section
2, notation is briefly introduced and some definitions
are given. Communicating stochastic game examples
are included in Section 3. The restricted game model
is presented and convergence is proven for the solu-
tion of a sequence of restricted games that approach
the original game in Sections 3.1 and 3.2, respec-
tively. Concluding remarks are presented in the final
section.

2. Notation and definitions

Let Xn be the random variable denoting the state of
the two-person zero-sum stochastic game at epoch n.
It takes values from a finite state space S={1, . . . , S}.
After observing the state of the game at epoch n, play-
ers I and II simultaneously take actions represented
by the random variables An and Bn, respectively. The
finite sets of actions available in state i for players I
and II are Ai = {1, . . . , Mi} and Bi = {1, . . . , Ni},
respectively. Then, {(Xn, An, Bn), n = 1, 2, . . .} is
the underlying stochastic process of the game.
As a function of the state visited and the actions
taken at epoch n, player II pays player I a payoff
Rn = R(Xn, An, Bn) instantaneously. It is assumed
that the payoffs are finite. Given that the process is
in state i and action pair (a, b) is taken by the play-
ers at epoch n, the transition probability of being
in state j at the next epoch is P(Xn+1 = j |Xn =
i, An = a, Bn = b). We consider time-homogeneous
processes, i.e., E (R(Xn = i, An = a, Bn = b)) = riab

and P (Xn+1 = j |Xn = i, An = a, Bn = b) = Piabj

for all n = 1, 2, . . . .

Let fn and hn be the behaviour strategies (prob-
ability distributions over the action spaces given
the complete history) of player I and II, respec-
tively, at epoch n. Since a stationary strategy is a
behaviour strategy such that the dependence on his-
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tory is through the current state being visited, let the
vectors � = (�11, �12, . . . , �1M1; . . . ; �S1, . . . , �SMS

)

and � = (�11, �12, . . . , �1N1
; . . . ; �S1, . . . , �SNS

) de-
note the stationary strategies for players I and II,
respectively, where �ia = P(An = a|Xn = i) and
�ib = P(Bn = b|Xn = i) for every epoch n when the
current state is i.

In case players’ strategies are specified, correspond-
ing expected payoff and transition probabilities will
be denoted by writing the vectors of these strategies
in parentheses. If, on the other hand, an action is fixed
for a player, the subscript will be retained. For ex-
ample, ri(�, �) =∑

a∈Ai

∑
b∈Bi

riab�ia�ib is the ex-
pected payoff in state i given the strategy pair (�, �).
Another example could be Piaj (�)=∑b∈Bi

Piabj �ib,
the transition probability of visiting state j at the next
epoch, given that the current state is i and the first
player takes action a and the second player’s strategy
is �.

When the initial state is i, the long-run average ex-
pected payoff to player I under the strategy pair (f, h)

is defined as

�i (f, h) = lim inf
N→∞

1

N

N∑
n=1

Ef,h(Rn|X1 = i).

The payoff to player II is −�i (f, h). If the long-run
average expected payoff is independent of the initial
state under the behaviour strategies f and h, then the
subscript i is dropped in �i (f, h). Since the objective
of player I is to maximize his average expected reward
and the objective of player II is to minimize his average
expected loss, the strategy pair (f̂, ĥ) is said to be �-
optimal (� > 0) if

�i (f, ĥ) − ���i (f̂, ĥ)��i (f̂, h) + � (1)

is satisfied for all behaviour strategies f and h and all
i ∈ S. (f̂, ĥ) is called optimal and forms the limiting
average equilibrium, and �i (f̂, ĥ) is called value of the
game for initial state i, on which both players agree if
and only if � = 0 in (1).

Ergodic structure of stochastic games is determined
by analyzing the underlying Markov chain P(�, �) of
the state process {Xn, n = 1, 2, . . .} under every pure
strategy pair (�, �) (a stationary strategy is called pure
if it assigns only one action to each state).

Definition 1. A stochastic game is said to be unichain
if the Markov chain induced by every pure strategy
pair has one recurrent class and a (possibly empty) set
of transient states.

If there are no transient states, then the game is
called irreducible. Note that a stochastic game is ir-
reducible when the states are reachable from each
other under every stationary strategy pair. Since it
is known from [12] that there exist optimal station-
ary strategies �∗, �∗ for irreducible undiscounted
stochastic games, the minimax theorem can be stated
as

max
�∈C1

0

min
�∈C2

0

�(�, �) = �(�∗, �∗)

= min
�∈C2

0

max
�∈C1

0

�(�, �), (2)

where C1
0 = {� |∑a∈Ai

�ia = 1, i ∈ S, and ��0},
C2

0 = {� |∑b∈Bi
�ib = 1, i ∈ S, and ��0}. The

space of feasible stationary strategies such that
� ∈ C1

0 and � ∈ C2
0 will be denoted by C0. Sub-

script i of � denoting the initial state is dropped
in (2) because the game under consideration is
irreducible.

Definition 2. If there exists a pure strategy pair (�, �)

such that j is accessible from i under (�, �) for all
ordered pairs of states (i, j), then the stochastic game
is said to be communicating.

Note that an irreducible stochastic game possesses
the communication property. In a communicating
stochastic game, P(�, �) is irreducible for every sta-
tionary strategy pair (�, �) that satisfies �ia�ib > 0
for all a ∈ Ai , b ∈ Bi , i ∈ S. A communicating
stochastic game may have a unichain or multichain
structure.

In order to determine how good a stationary strat-
egy pair (�̂, �̂) is over C0, Filar et al. [10] intro-
duce the distance function,

∑
i∈S(max�∈C1

0
�i (�, �̂)−

min�∈C2
0
�i (�̂, �)), that quantifies the distance from

optimality. In case relation (2) is not satisfied over C0,
best stationary strategies are found by minimizing the
distance function. Otherwise, the minimum distance
is zero at (�∗, �∗).
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3. Communicating stochastic games

In this section, first some example games are pre-
sented in order to investigate the behaviour of game
value and ergodic structure of such games under op-
timal or best stationary strategies. Then, the proposed
procedure is introduced and its convergence is studied.

Matrix notation used for each state i is such that
each entry corresponds to an action pair (a, b) of
the players. The value in the upper diagonal of each
entry is riab while the lower diagonal gives either
the probability distribution over the future states,
(Piab1, Piab2, . . . , PiabS), or just the next state to be
visited.

In the first two examples, value of the game is not
independent of the initial state. Thus, the proposed pro-
cedure cannot be used to solve these types of games.
In Examples 1 and 3, value of the game is achieved
under stationary strategies, while in Examples 2 and
4, it is not.

Example 1. Although this communicating game is
multichain (it has more than one recurrent class under
a stationary strategy pair), communication property
specified in Definition 2 is satisfied. The optimal
stationary strategy is (�∗, �∗) = ((1; 1, 0), (1, 0; 1)),
under which the game has two disjoint chains.
Value of the game is 0 (1) when the initial state is
1 (2).

1

2

0 1 0

1 2 1

state 1 state 2

Example 2. A variation on the Big Match by
Blackwell and Ferguson [6] (due to Koos Vrieze).
For (initial) state 1, there does not exist an opti-
mal strategy over the space of stationary strategies
because max�∈C1

0
min�∈C2

0
�1(�, �) = 0, whereas

min�∈C2
0

max�∈C1
0
�1(�, �) = 1

2 . The best stationary
strategy pairs in state 1 are such that player II chooses
each action with a probability of 1

2 and player I may
choose any stationary strategy. Unlike state 1, value

of the game in states 2 and 3 (which are 0 and 1,
respectively) is achieved under stationary strategies.

1 0 1

1 1 3

0 1 0 1 0

2 3 2 1 1

state 1 state 2 state 3

Example 3. Under the condition that the game value
is independent of the initial state, the following ques-
tion may arise: does there exist at least one opti-
mal stationary strategy pair under which the game is
unichain? As this example shows, the answer is not
affirmative. The ergodic structure of a communicating
stochastic game under every optimal stationary strat-
egy pair may be multichain even though the value
of this game is independent of the initial state. The
only optimal stationary strategy pair for this game is
(�∗, �∗) = ((1, 0; 0, 1), (0, 1; 1, 0)) and value of the
game is 1 which is independent of the initial state.
P(�∗, �∗) is multichain such that each of the states
defines an ergodic class by itself.

2 1 0 1

1 1 2 1

0 0 1 2

2 1 2 2

state 1 state 2

Example 4 (due to Koos Vrieze). Since min�∈C2
0

max�∈C1
0
�1(�, �) = 1 = sup�∈C1

0
inf�∈C2

0
�1(�, �),

player I does not have an optimal stationary strategy
but every stationary strategy is optimal for player
II. Note that value of the game does not depend on
the initial state, so there exist �-optimal stationary
strategies for player I given any � > 0.

0 1 1

1 1 2

1 0 0

2 1 1

state 1 state 2
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Proposed procedure deals with communicating
games that have state-independent value as in the last
two examples.

3.1. The algorithm

Proposed procedure requires employment of the it-
erative algorithm developed by Hoffman and Karp
[13] over a restricted strategy space. Therefore, in this
subsection, first, Hoffman and Karp’s algorithm is re-
viewed, and then the proposed procedure is presented.

Hoffman and Karp’s algorithm converges for the
class of irreducible undiscounted stochastic games.
Their algorithmic construction is based on the use of
MDP methodology. In two-person games, when the
strategy of one player is fixed, the problem reduces to
an MDP problem for the other player. From the MDP
literature, it is known that given � the following Linear
Programming (LP) formulation can be used to solve
max� �(�, �) when the MDP under consideration is
irreducible.

Problem P 1
Min g

s.t. g + vi �ria(�) + ∑
j∈S

Piaj (�) vj ,

i ∈ S, a ∈ Ai ,

g unrestricted,

vi unrestricted, i ∈ S,

where decision variables g and vi can be interpreted as
the long-run average expected payoff and the change
in the total payoff when the initial state is i, respec-
tively, under the limiting conditions. So, by definition
the value of vi is determined up to a constant. Using
the complementary slackness property, the optimality
condition is given as

g∗ + v∗
i = max

a∈Ai

⎛
⎝ria(�) +

∑
j∈S

Piaj (�) v∗
j

⎞
⎠ , i ∈ S,

in the average payoff MDP.
In the light of this insight into the problem, Hoff-

man and Karp [13] define the matrix game �i (v) with
entries (riab + ∑

j∈SPiabj vj ) for each action pair
(a, b) when the initial state is i and give the optimal-
ity condition as follows: g∗ + v∗

i = val �i (v∗), i ∈ S,
where the right-hand side denotes the value of �i (v∗).
Given vj values, for each initial state i, the matrix
game �i (v) can be solved using the following LP:

ProblemP 2(i)

Min wi

s.t.
∑

b∈Bi

�ib

(
riab+∑

j∈S
Piabj vj

)
�wi,

a ∈ Ai ,

�∈C2
0 ,

wi unrestricted.

Optimal solutions to Problem P 2(i) give the optimal
strategies of the second player and wi = val �i (v), i ∈
S, for given v vector. The dual of Problem P 2(i) is
used to find the first player’s optimal stationary strat-
egy for given v.

By recalling the minimax theorem, one can under-
stand better the use of MDP theory in analyzing the
behaviour of stochastic games. Hoffman and Karp’s
iterative algorithm can be implemented in two ways.
One way is to minimize max� �(�, �) over all � in C2

0
and the other is to maximize min� �(�, �) over all �

in C1
0 until achieving convergence at �∗ and �∗, re-

spectively. Hoffman and Karp [13] prove the conver-
gence of their algorithm to the value of the irreducible
stochastic game. This proof is based on the observa-
tion that the sequence of g values obtained through
iterations of the algorithm is monotone nonincreasing,
and g and v = (v1, v2, . . . , vS) vary in a compact set.
The second observation follows because at every iter-
ation g and v exist, and are unique for vS = 0 and are
continuous functions of � which vary in a compact set.

By definition, a communicating stochastic game is
irreducible if a positive probability is assigned to every
action pair. For every sufficiently small � > 0, define
the sets

C1
� =

⎧⎨
⎩�

∣∣∣∣∣∣
∑

a∈Ai

�ia = 1, i ∈ S, and ���e

⎫⎬
⎭ and

C2
� =

⎧⎨
⎩�

∣∣∣∣∣∣
∑
b∈Bi

�ib = 1, i ∈ S, and ���e

⎫⎬
⎭ ,

where e is the vector with appropriate size such that all
of its entries are 1. Let C� = {(�, �)|� ∈ C1

�, � ∈ C2
�}.

In order to have a one-to-one correspondence between
the extreme points of C0 and C�, every action should
be taken with a value strictly greater than all the other
actions’ smallest value �, i.e., � < 1 − �(Mi − 1) and
� < 1−�(Ni−1), i ∈ S, have to hold. These two strict
inequalities imply that � < min {1/Mi, 1/Ni}, i ∈ S.
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Now, define �̃a
i = (�̃a

i1, �̃
a
i2, . . . , �̃

a
iMi

) for all i ∈ S

and a ∈ Ai , and define �̃
b

i = (�̃
b

i1, �̃
b

i2, . . . , �̃
b

iNi
)for

all i ∈ S and b ∈ Bi as

�̃a
ic =

{
1 − �(Mi − 1) if c = a,

� otherwise,
and

�̃
b

id =
{

1 − �(Ni − 1) if d = b,

� otherwise,

respectively. Define Problem P3 by replacing ria(�)

and Piaj (�) in Problem P1 with ri(�̃
a
i , �) and

Pij (�̃
a
i , �), respectively. Similarly, let Problem P 4(i)

be such that riab and Piabj in Problem P 2(i) are
replaced with rib(�̃

a
i ) and Pibj (�̃

a
i ), respectively, and

� ∈ C2
� .

Since a communicating stochastic game is ir-
reducible under every stationary strategy pair in
C�, there exists an optimal stationary strategy pair
(��, ��) such that the minimax condition in (2) holds
over C�. Denote the value of the stochastic game
over C�, i.e., �(��, ��), by g�. Next, we present the
proposed procedure that requires the implementa-
tion of Hoffman and Karp’s algorithm over C� with
0 < � < mini∈S {min {1/Mi, 1/Ni}}.

Step 0: Choose a stationary strategy �(1) ∈ C2
� for

player II. Let n = 1.

Step 1: Increment n by one. Given �(n − 1), solve
Problem P3 to find g(n), v(n) letting vS = 0.

Step 2: Given v(n), solve Problem P4(i) for all i ∈
S to find wi(n), i ∈ S, and �(n).

If �(n)= �(n− 1), then �(n) is an optimal strategy
for player II and g(n) is the value of the stochastic
game on C�, stop.

Otherwise, go to step 1.
To illustrate the implementation of this procedure

(both the one given above to find �� and its dual
version to find ��), Examples 3 and 4 are studied.
In Example 3, let � be 0.001. The procedure stops
in the second iteration at (�, �) = ((1 − �, �; �, 1 −
�), (�, 1 − �; 1 − �, �)) with corresponding game
value of 0.9999995, when the initial (�, �) chosen at
step 0 is ((�, 1 − �; 1 − �, �), (1 − �, �; �, 1 − �)).
On the other hand, for Example 4 convergence of

the procedure is slow at least for the initial (�, �)

tried, i.e., ((1 − �, �; 1 − �, �), (1 − �, �; 1)), with
� = 0.001. In this case, the procedure is stuck around
((0.968, 0.032; 0.999, 0.001), (0.03, 0.97; 1)) with
a game value around 0.97. As � gets smaller, it
is observed that convergence is to ((1 − �, �; 1 −
�, �), (�, 1−�; 1)) with the corresponding game value
approaching 1.

3.2. Convergence

Since a communicating stochastic game is irre-
ducible over C�, convergence of the Hoffman and
Karp’s algorithm (which is also outlined in the previ-
ous subsection) for given � follows from [13]. To see
the convergence, one can also look at the following
equivalent representation of the restricted game.

Let G be a communicating game with the law of
motion Piabj in which the value is independent of the
initial state. Let G� be its restricted game with the law
of motion P

�
iabj . To obtain P � explicitly, note that,

extreme points of C� are all possible combinations

of the vectors �̃1
i , . . . , �̃

Mi

i and �̃
1
i , . . . , �̃

Ni

i . A pure
strategy pair (�, �) in C0, i.e., an extreme point of
C0 such that (ai, bi) is the action pair taken in state
i, corresponds to the extreme point of C� such that

(�̃
ai

i , �̃
bi

i ) is taken in state i. The law of motion for the
restricted game defined over C� is

P
�
iabj ≡ Pij (�̃

a
i , �̃

b

i )

= (1 − �(Mi − 1)) (1 − �(Ni − 1)) Piabj

+ (1 − �(Mi − 1)) �
∑
d �=b

Piadj

+ � (1 − �(Ni − 1))
∑
c �=a

Picbj

+ �2
∑
c �=a

∑
d �=b

Picdj

in terms of Piabj . Hoffman and Karp’s algorithm ap-
plied to this perturbed game will converge to the op-
timal stationary strategy pair (��, ��) and the optimal
value of the game g� for given �.

To prove the convergence of the proposed procedure
to the value of the communicating game as � gets
smaller, note that when the value of a stochastic game
is independent of the initial state there exist �-optimal
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stationary strategies for any � > 0 [11]. Let (��, ��)

denote an �-optimal stationary strategy pair for a given
communicating stochastic game whose value is state-

independent, and
{
(�(n), �(n))

}∞
n=1

be a sequence such

that (�(n), �(n)) ∈ C�n
, �n > 0 for all n, �n → 0 and

(�(n), �(n)) → (��, ��) as n → ∞. The convergence
proof of Proposition 1 results from the observation

that
(
�(n), �(n)

)
is �-optimal for any � > 0 for both the

original game over C0 and the restricted game over
C�n

when n is sufficiently large. The following lemma

shows that
(
�(n), �(n)

)
is �-optimal for the original

game over C0.

Lemma 1. Consider a communicating stochastic
game whose value is independent of the initial state.
Let (��, ��) be an �-optimal stationary strategy pair.

For any � > 0, consider
(
�(n), �(n)

)
∈ C�n

such that

�n > 0 for all n, �n → 0 and
(
�(n), �(n)

)
→ (��, ��)

as n → ∞. Then,
(
�(n), �(n)

)
is �-optimal for the

original game if n is large enough.

The proof of Lemma 1, which can be found
in the longer version of this paper [3], is given
by investigating the behaviour of min�∈C2

0
�(�, �)

(max�∈C1
0
�(�, �)) around �� (��) within C1

�n
(C2

�n
)

letting n go to infinity because � is not necessarily
continuous over C0. Note that when � in C1

�n
(� in

C2
�n

) is fixed for player I (II) in a communicating
game, the resulting MDP problem for player II (I) is
a communicating MDP, which means that � turns out
to be state-independent (subscript i is dropped) with
respect to the minimizing (maximizing) strategy of
player II (I).

Remark. Let (��, ��) denote an �-optimal sta-
tionary strategy pair for a given communicating
stochastic game whose value is state-independent,

and
{
(�(n), �(n))

}∞
n=1

be a sequence such that(
�(n), �(n)

)
∈ C�n

, �n > 0 for all n, �n → 0 and(
�(n), �(n)

)
→ (��/2, ��/2) as n → ∞. An imme-

diate discussion for �-optimality of
(
�(n), �(n)

)
over

C0 would be as follows: For any � > 0, there exists

an N� such that by choosing strategy ��/2 player II
guarantees to have an expected average payoff equal
to at most �∗ + �/2 over N� stages for any � taken by
player I and any initial state. Then, for a sufficiently
large n, with strategy �(n) for player II the expected
average payoff over N� stages would be at most �∗+�
for any strategy of player I and any initial state. Since
the game value is independent of the initial state, the
same arguments hold for the next N� stages. Using
the law of large numbers it can be concluded that

�i

(
�, �(n)

)
for any i would be at most �∗ + � for

sufficiently large n. Thus, repeating similar arguments

for �(n) also, it is shown that
(
�(n), �(n)

)
is �-optimal

over C0.

Although the arguments in the remark might
seem immediate, the proof of Lemma 1 is referred
to since the analysis of functions min�∈C2

0
�(�, �)

and max�∈C1
0
�(�, �), and its implications might be

useful in devising alternative solution procedures
(even under some other less restrictive conditions)
and would clarify any question about the short cut
arguments (especially, to see how �(n) guarantees
�∗ + �) in the remark. Furthermore, the analysis
in Lemma 1 (and Lemma 2 in [1,3], see also [20])
given as the prerequisite of Lemma 1) is related to
the research stream, an overview of which is given
in [18,17].

Finally, we present our result on the conver-
gence of the value over the restricted spaces, i.e.,
the value of G�, to the value of G within some �
distance.

Proposition. For a communicating stochastic game
with a value independent of the initial state, the so-
lution obtained by the proposed procedure over C�,
� > 0, gives the original game value within �, for any
� > 0, if � is small enough.

Proof. Given any � > 0, consider
(
�(n), �(n)

)
∈ C�(n)

such that �n > 0 for all n, �n → 0 and
(
�(n), �(n)

)
→

(��, ��) as n → ∞. From Lemma 1,
(
�(n), �(n)

)
is �-

optimal over C0 for n sufficiently large. Since C�n
⊂

C0, given any � > 0,
(
�(n), �(n)

)
is �-optimal also over

C�n
for sufficiently large n. On the other hand, by
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definition of (��n , ��n),

min
�∈C2

�n

�(�(n), �)� min
�∈C2

�n

�(��n , �) = �(��n , ��n)

= max
�∈C1

�n

�(�, ��n)� max
�∈C1

�n

�(�, �(n))

(3)

which shows (relaxing lower and upper bounds in (3)
by �∗ − � and �∗ + �, respectively, due to �-optimality

of
(
�(n), �(n)

)
over C�n

for sufficiently large n) that

limn→∞ �(��n , ��n) = �∗. �

The question to be addressed next would be what
the distance (as defined in [10]) from optimality is
under the strategies found by the proposed proce-
dure. Note that this distance can be computed for
any strategy pair by just solving two MDPs. But the
challenge would be to answer how the distance from
optimality for (��, ��) changes as � varies. Particu-
larly, when � goes to zero, does it decrease? Although
the analysis in this note is not enough to claim the
convergence of (��, ��) to an �-optimal policy pair,
we have not encountered a counter example in our
experiments.

4. Conclusion

The procedure proposed here is based on the
use of Hoffman and Karp’s algorithm. Obtaining
the game value with an error of � for any � > 0 is
guaranteed under the condition that the game value
is independent of the initial state. It is conjectured
that �-optimal stationary strategies could also be
evaluated.

The previous work that could be compared to the
proposed procedure is due to Federgruen [9] and Van
der Wal [19]. Hoffman and Karp’s algorithm is an
adaptation of the policy-iteration method devised for
solving MDP problems. On the other hand, the method
employed in both [9,19] is successive approximation
(value-iteration) method, optimal long-run average
payoff of a stochastic game and for finding stationary
�-optimal strategies. The first one is based on select-
ing a sequence of discount factors that approaches 1
and solving a discounted game for this sequence, and
converges under the condition that there exist optimal

stationary strategies with a value independent of the
initial state. The second algorithm due to Federgruen
[9] is a special case of his first algorithm where inter-
est rate (discountfactor) is 0 (1). Even in MDPs, the
convergence of the value-iteration algorithm depends
on the aperiodicity property. This problem arises also
for stochastic games. Federgruen suggests the use
of Schweitzer’s data-transformation to obtain strong
aperiodicity, which requires Piabj > 0 for all i, j, a, b,
and guarantees the convergence when the game is
unichain under every pure strategy pair. This recur-
rence condition implies the conditions given for the
convergence of Federgruen’s first algorithm (see [9]).
Van der Wal [19] proved that if the game is unichain
under every pure strategy pair or if the functional
equation ge + v = max� min� {r(�, �) + P(�, �)v}
has a solution, then his algorithm gives �-optimal
stationary strategies. He also uses Schweitzer’s data-
transformation if the strong aperiodicity property is
not satisfied. To summarize, the differences of the
proposed approach from [9,19] are (i) the use of
policy-iteration method (instead of value-iteration),
(ii) the requirement for communication property (in-
stead of unichain ergodic structure in the second
algorithm of Federgruen) and (iii) the concentration
on a restricted strategy space over which a com-
municating stochastic game is irreducible (instead
of the use of Schweitzer’s data-transformation) to
guarantee convergence. In all these approaches, the
state-independent game value condition is either im-
posed directly or implied by the assumption on the
ergodic structure (as in the case of unichain game
assumption).

Future research topics include proving the conver-
gence of (��, ��) to an �-optimal policy pair, and de-
vising solution procedures for communicating games
with the state-independent value condition being re-
laxed and incorporating such solution procedures into
the algorithms based on the hierarchical decomposi-
tion of the state space into communicating classes as
in [2,16].
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