
748 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 5, OCTOBER 1995 

Allocation Sequences of Two Processes Sharing a Resource 

Bruno Gaujal, Mohsen Jafari, Melike Baykal-Giirsoy, 
and Giilgiin Alpan 

Abstract-We study a Petri net model of a system composed of two 
processes sharing a resource. Conflicts may occur over the usage of the 
shared resource, thus making the system nondeterministic. Therefore, in 
the context of minimax algebra, it cannot be formulated as a linear system 
in order to compute its performance measures. However, if the sequence 
by which the resource is allocated to the two processes is known, we 
can transform the system into a decision-free net. For this system with 
an imposed constraint on the resource allocation frequencies, we show 
that the optimal allocation sequence is the most regular integer sequence 
satisfying that constraint. We also discuss the periodic behavior of this 
system under no constraints on the resource allocation frequencies. 

I. INTRODUCTION 
We consider a system where two processes are sharing a common 

resource. Each process undergoes a number of activities (operations) 
in a cyclic manner. There are two types of activities, depending 
on whether or not the common resource is being utilized. For each 
process, the set of activities utilizing the common resource is followed 
by the set of activities not utilizing that resource. Each activity has 
a fixed duration or temporization. 

The above system is typical in manufacturing applications. For 
instance, in a manufacturing work-cell, the two processes could 
correspond to two workstations (e.g., CNC machine tools) while 
the common resource corresponds to a robot in charge of material 
handling. The workstations may work independently or they may 
interact due to, for example, the flow of parts from one workstation 
to another. In this article, we shall use the term “parallel system” 
to refer to the cases where there is no interaction between the two 
workstations and “serial system” to refer to those where the two 
processes interact. 

For some temporizations, it is possible not to have any conflict. In 
such a case and with no external constraints on the use of the resource, 
the system follows its natural frequency, which merely depends on 
the intemal characteristics of the system (e.g., temporizations of the 
activities and the interaction between the two processes). Here, it 
is of interest to compute the number or the frequency of resource 
allocations for each process per period and the allocation sequence. 
If conflict was possible because of temporizations, then the sample 
path or the system frequency would also depend on how the conflicts 
are resolved. In such a case, it would also be of interest to determine 
the optimal conflict resolution scheme so that some performance 
measures, such as system period, are minimized. 

It is also possible to impose an external control on the system 
frequency, so that the number of allocations of the resource to each 
process is fixed and prespecified. Here, given the resource allocation 
frequency, we are interested in the optimal resource allocation 
sequence so that some performance measures, such as the makespan 
to complete all the allocations, are minimized. 

The above system can be modeled as a simple timed Petri net where 
the Petri net structure exhibits conflict. The term “simple” refers to the 

Manuscript received April 13, 1993; revised November 1, 1994. 
B. Gaujd is with the Dimacs Center, Rutgers University, Piscataway, NJ 

M. Jafari, M. Baykal-Giirsoy, and G. Alpan are with the Department of 

IEEE Log Number 9411928. 

08855 USA and AT&T Bell Laboratories, NJ, USA. 

Industrial Engineering, Rutgers University, Piscataway, NJ 08855 USA. 

Process A Process E 

Fig. 1. Simple Petri net modeling the system. 

class of ordinary Petri nets, where a transition has at most one input 
place shared with other transitions (see [9] for more detail). Generally 
speaking, any ordinary timed Petri net containing a structural conflict 
can be transformed into a decision-free net under a specific transition 
firing schedule. A subclass of decision-free nets are marked graphs, 
which are ordinary Petri nets such that any place has one input tran- 
sition and one output transition. No conflicts exist in a marked graph. 
Due to their deterministic behavior, the set of equations obtained by 
relating the earliest or latest firing times of transitions in a marked 
graph are linear in the context of minimax algebra [4], [3]. Thus, 
different performance measures can be obtained by solving these 
linear equations. There are also graph-theoretic based approaches 
[lo], [7] for the performance analysis of timed marked graphs. 

Not knowing the transition firing schedule a priori, ordinary timed 
Petri nets (including the class of simple Petri nets we are considering) 
are nonlinear in the context of minimax algebra. There are no 
analytical techniques for solving these nonlinear systems. In this 
article, we analyze simple nonlinear Petri nets with some limited 
structure. 

In Section 11, we present some notations. In Section 111, we analyze 
a simple timed Petri net where constraints are imposed on the 
transition firings. In this case, we attempt to compute the optimal 
resource allocation sequence, that is, the sequence by which the 
resource is utilized by the two processes with a given allocation 
frequency which gives the minimum makespan time. In Section IV, 
we discuss the periodicity and performance of a simple timed Petri 
net where there are no constraints imposed on the transition firings. 
In Sections V and VI, we consider extensions such as processes with 
inputs and the processes working in series, and show that they have 
equivalent systems that are already analyzed in the paper. 

11. PREL”ARIEs 

We will be using the notations N, denoting the set of positive 
integers, R, denoting the set of reals, and lcm, denoting the least 
common multiple. Fig. 1 illustrates the system to be studied in this 
article. Places represent the activities and transitions the events taking 
place in the system. Associated with places are temporizations: a1 

and a2 for process A, and P1 and / 3 ~  for process B .  We denote by 
T the quadruplet (a1, CYZ, PI, p ~ ) .  The temporized system is denoted 
(S, 2’). As can be seen from Fig. 1, during a1 (respectively, PI) 
the common resource is being used by process A (respectively, B). 
During (respectively, Pz), process A (respectively, B) performs 
activities not involving the resource. Thus, the former activities 
have to be in mutual exclusion while the latter can be taking place 
in parallel. We note that the Petri net in this figure is a simple 

1042-296X/95$04.00 0 1995 IEEE 



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11 ,  NO. 5, OCTOBER 1995 749 

I 

Process A Process B 

Fig. 2. Free-choice net modeling the system S. The resource is available 
if there. is a token in place R. Once the allocation sequence is given, the 
resource is routed accordingly. 

Petri net exhibiting structural conflict. According to this structure, 
the allocation of the resource to a given process is preconditioned 
by that process requiring the resource. In the case that there are 
constraints imposed on transition firings (i.e., constraints imposed on 
the allocation of the resource to the two processes), we can transform 
this Petri net into a free-choice net. This would give us control over 
allocating the resource to a given process independent of the state of 
the two processes. The reader notes that in free-choice nets, if two 
transitions are sharing a common input place, then it must be the 
only input place for either transition. See [8] for a comprehensive 
discussion on Petri nets and their variations and extensions. 

III. A SYSTEM WITH IMPOSED FREQUENCY 

In this section, we study the optimal resource allocation in the 
above system. The objective is to find the allocation sequence mini- 
mizing the idle time of the resource given the following constraint on 
the frequency of resource allocation: For every N allocations of the 
resource, process A must receive the resource p times and process 
B must receive it q times with p + q = N .  The couple (p, q )  will 
be called the frequencies of the system. The reader notes that we 
are still free to choose any resource allocation sequence satisfying 
this constraint. Therefore, the simple net system of Fig. 1 reduces 
to that of Fig. 2, which depicts a free-choice net. We further restrict 
ourselves to allocation sequences which are periodic with period N .  

Under these conditions, minimizing the idle time of the resource 
is equivalent to minimizing the total time required to go through the 
N allocations. Indeed, if we denote by M the total time of running 
the system for p + q = N allocations, the idle time of the resource 
is M - p a l  - qp1. 

We adopt the following notations. We consider the alphabet {A, B }  
and the set N of the words formed from N letters of this alphabet. If 
X and Y are different letters in {A, B}, the word XX . . . X Y . . . Y 

is denoted by X ' Y J .  
Let E(p, q )  be the set of all the words in N formed with p A's and 

q B's. An element w in E(p,  q )  corresponds to a period of a possible 
allocation sequence of the resource satisfying the given frequencies 
( p ,  q) .  The time that it takes for the system to execute the sequence w 
is called the makespan of the system (S, T, w )  and is denoted by M,.  

z 3 

A. Optimal Allocation Sequence 
The problem can now be rewritten as: Find w* in E ( p , q )  such 

that M,* is minimum. In the following we assume without loss of 
generality that q 2 p. 

ai b 

Fig. 3. Marked graph M G ( S , T ,  w). The places with weight ap1+ 
( U  - 1)Pz result from the aggregation of (2a - 1)  places with holding 
times P I ,  P z ,  . . . ,  PI. 

Theorem I :  In the case where q = up, where U E N, the sequence 
w* = (AB")P is an optimal allocation sequence in the sense that for 
any temporizations ( ( Y I , ~ z , P I , ~ ~ ) ,  M,* 5 M,,Vw E E(p ,q ) .  

This optimal sequence does not depend on the temporizations but 
only on the values of p and q. We also note that this sequence 
distributes the A's and the B's as evenly as possible. In the general 
case (q is not a multiple of p), the method used below cannot be 
applied. However, there is strong evidence suggesting that the most 
regular sequence should also be optimal. A related result is shown in 
[5 ] .  The worst case has already been studied, and the worst sequence 
is known to be w = A P B 4 ,  which corresponds to a near complete 
sequentialization of the system (see [2]). Once the sequence w is 
given, the new system (S, T, w) can be modeled as a marked graph 
( M G ( S ,  T, w)),  i.e., a decision-free Petri net. If C is a circuit in the 
graph MG( S, T, w), let t (C)  be the sum of the temporizations of the 
places belonging to the circuit. t (C)  is also called the temporization 
of the circuit. The makespan of the system is then given by the 
temporization of the slowest circuit in the net MG(S ,T ,w)  (see 
[l]), where the slowest circuit is the circuit with the maximum 
temporization. We say a circuit C in the M G ( S ,  M )  is critical if 
there exists a temporization of the system T = (al, az, PI, P 2 )  such 
that C is the slowest circuit in MG(S ,  T, w). 

Proof: The proof directly follows from two lemmas which are 
given next. In Lemma 1, we show that MG(S ,  T, w*) (depicted in 
Fig. 3) has at most three critical circuits. In Lemma 2, we show 
that for any sequence w E E ( p , q ) ,  we can find three circuits 
in MG(S ,T ,  w )  which are slower than the critical circuits of 
M G ( S ,  T, w'). 



750 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11 ,  NO. S. OCTOBER 1995 

Proof: Any sequence w can be written as w = AB"' A Bs2 . . . 
AB'p, where S I +  s:! +. . . + s, = q and s, 2 0, Vi.. Let us rearrange 
the p-tuple (SI , .  . . , s,) in the increasing order: ( t l , .  . . , t,) = 
(ql] ,  . . . , srPl) with tl 5 . . . 5 t,. Now, we can find a circuit 
D1 (resp. 0 3 )  in M G ( S ,  T, w), which is slower than C1 (resp. C3). 
Indeed, we can choose D1 (resp. 0 3 )  going through 01-places and 
aZ-places (resp. PI-places and P2-places). Thus, t (01)  = ~ ( C I )  and 

For the remaining circuit, let us define b by bP1 + ( b  - 1)Pz 5 
cvz < (b  + 1)p1 + bP2. We note that b is well defined if cy2 2 PI, 
else b is not defined. We consider two different cases: (b 2 a) and 
( b  < a or 0 2  < 01) 

For b 2 a, cy2 2 aO1 + (a - 1)&, and therefore ~ ( C Z )  5 C1 = 
t (01) .  This remark ends this case. 

t (D3)  = t(C3). 

C' C 

Fig. 4. If ai > 02, then the circuit c', which is equal to the circuit c 
except on this portion of MG(S,  T ,  wt) is slower than C,  so that any circuit 
C containing a Pz-place is not the slowest circuit. 

For (b < a or < pl) ,  we consider the circuit D2. This 
circuit is obtained by passing through the if > b > a 
and passing through cy2 otherwise. Therefore its temporization is 

Lemma I: The system MG(S ,T ,w*)  has at most three critical 
circuits. 

Proofi Case 1: (01 > Pz) .  
In this case, a circuit containing a P z  -place is not critical because 

this place can be replaced, as in Fig. 4, by the corresponding 
cyl-place to get a slower circuit. Therefore, slowest circuits nec- 
essarily contain all cy1 -places. 

Case 1.1: If az > aP1 + ( U  - 1)P2, then the slowest circuit 
necessarily goes through all az -places, applying the same reasoning 
as previously. Thus the slowest circuit is C1 going through cy-places, 
and its temporization is ~ ( C I )  = p a l  + p a z .  

Case 1.2: If cy2 5 aP1 +(U - 1)P2, then with a similar method, one 
can see that the slowest circuit is Cz, going through all al-places 
and through [@I + (U - 1)/3z]-places with temporization t(C2) = 
P a l  + qP1 + ( q  - P)PZ. 

Case 2: (,& 2 CUI). 
We consider two subcases: 
Case 2.1: If cyz 5 aP1 + (a - 1),&, then the critical circuit goes 

through [apl + (a - l)P~]-places and through Pz-places. We call 
this slowest circuit C3, and its temporization is t(C3) = qp1 + 4/32. 

Case 2.2: If az > aP1 + (a - 1)/32, suppose there exists a critical 
circuit C that goes through a ,&-place. (If not, C = Cl). 

Let us now assume that circuit C goes through an al-place just 
before the Pz-place (if no Pz-place satisfies this condition, then 
C = C3). If C is the slowest, then a1 + az 5 a(P1 + P z ) .  Now, 
the al-place itself must be preceded by an 02-place, because 
otherwise replacing the ai -place by a PZ-place would increase 
the temporization of the circuit. But now the inequality a1 + LYZ < 
a(P1 + P z )  makes this configuration impossible since this sequence of 
places can be advantageously replaced by the sequence of P-places. 
Thus this circuit can never be slowest circuit and there are only three 
critical circuits: 61, CZ , C3. 0 

Next, we prove that for any other allocation w, we can find circuits 
which are slower than the three critical circuits of the allocation w* . 
Thus, the slowest circuit of any sequence w is certainly slower than 
the slowest circuit of the sequence w*. 

Lemma 2: For any sequence w, and for any critical circuit C of 
MG(S,T,w*),  one can exhibit a circuit D in M G ( S , T , w )  such 
that t ( D )  2 t (C) .  

- 
t (Dz)  = p a l  + iaz + ( t P  + ... + tt+i)(P1 + P 2 )  - ( p  - i ) P z ,  
where i is defined by t ,  5 b < t ,+l  and i = 0 if b is not defined. 

By the definition of b, QZ 2 bP1 + ( 6  - 1)Pz. By the definition 
of 2, t l  5 b , .  . . , t ,  5 b .  Therefore, 

0'2 L t lP l  + (tl - 1)Pz 

i > .  
0 2  > ttP1 + ( t ,  - 1)Pz.  

Eventually, we have t ( 0 z )  > p a l  + (tl + . . . + tt)P1 + (tl + 
U 

We have proved that once the constant a is given, no matter what 
the temporization T is, the optimal allocation is given by tu*. This 

0 
We note that w* does not depend on p .  Therefore, we can say that 

the optimal allocation, when we want to give the resource a times 
to process B while it is given only once to process A on the long 
run, is w* = (AB")'. 

. . . + t* - P)PZ = t(Cz). 

ends the proof of the theorem. 

B. Computation of the Resource Allocation Frequencies 
In this section we consider the problem of computing the optimal 

resource allocation frequencies: Given the temporization T of the 
system, and assuming that q is multiple of p, find the optimal 
frequencies p and q minimizing the idle time of the resource. Since 
when q = ap  there exist only three critical cycles, the idle time per 
allocation is therefore given by the function shown at the bottom of 
the page. We notice that h does not depend individually on p and q 
but depends only on the integral term a, and thus the above problem 
can be rewritten as minimization of the function h ( a ) ,  defined by: 

h ( a )  = max(kl(a) ,hz(a) ,hs(a))  
a 4  - 0 1 .  where h l (a )  = "2-ap "+I ' 1 h z ( a )  = a+l and h3(a) = 

Note that hz (U) = h3 (a) + w. This allows a simpler description 
of the function h (see equation at the bottom of the page). 

If cy1 > PZ then h ( a )  = max(hl(a),hz(a)), which achieves its 
minimum at the optimal point a = a. This optimal value gives 
two possible integers: a1 = 

If cy1 5 PZ then h ( a )  = max(hl(a) ,hg(a)) ,  and its minimum 
is at the point a = e. This gives two possible values for a: 
al  = la] and a2 = [ a l .  In both cases, the determination 

and az = [=I. 



EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 5, OCTOBER 1995 75 1 

of the best constant a can be made by the analysis of the two networks 
with the two possibilities al and ag. 

Iv. A SYSTEM WITH NO CONTROL ON THE RESOURCE 

In this section, we consider the original system (two processes 
sharing a resource in mutual exclusion) without any frequency 
constraint on the resource allocation (see Fig. 1). In this system, the 
resource is given to the first process that is waiting for it. If the two 
processes become ready simultaneously to use the resource, we call 
this situation a conflict and different policies can be applied to solve 
it. A static policy would, for example, give a fixed priority level 
to each of the processes: The one with the higher priority acquires 
the resource. Dynamic policies may also be used. For example, the 
resource is given to the process which did not acquire the resource the 
last time it was allocated (alternative routing). Some priority policies 
can be imbedded in the Petri net structure. Here, we shall keep the 
Petri net structure independent of the conflict resolution policy (see 
Fig. 1). We will only assume that while executing the Petri net, B 
will be given a higher priority than A to use the resource in the case 
of a conflict. 

First we show that this system is periodic and that once again, the 
allocation of the resource is the “most regular sequence.” Consider 
the system without process B. Then, its behavior is periodic with 
period a1 + ag, the resource being used during time a1 per period. 
The symmetric system (without process A) has a period /?I + / 3 z ,  and 
the resource is used during P I .  

Let f and g be two periodic functions with respective periods 
a = a1 + az and /3 = /31 + Pz. On [0, a), f (respectively, g) is 
given by 

f (z )  = 1 i f 0  5 z <a1 

f ( x )  = 0 if 5 z < a2 + a l .  

and 

g(z) = 1 if 0 5 x < /3l 

g ( x ) = O i f h  5 z < P z + / 3 1 .  

These two functions will represent the use of the resource by the 
two processes. f(z) = 1 means that process A holds the resource 
at time z. f(z) = 0 means that A does not hold the resource at 
time x and, respectively, with g and B (see Fig. 5). Now we define 
f iA(z)  = f (z  - iA) and gzg (x) = g(z  - i s )  to represent the two 
processes with their initial phases i A  and i s .  

If the two processes are superimposed, they behave as if they were 
alone as long as the intervals cy1 and /31 do not overlap. If they 
overlap, then one of the processes has to wait for the resource. After 
a waiting point, two cases may happen. One option is that A has been 
waiting, in which case the system restarts with a phase 4 ~ :  A begins 
its interval a1 and B its interval P z ,  and this phase corresponds to 
i A  = 0 and iB = PZ (see Fig. 6). In the other instance, B has been 
waiting for the resource, in which case the system restarts with a 
phase +E between the two processes: B starts its interval PI and A 
starts its interval az. This phase corresponds to i~ = 02 and is = 0 
(see Fig. 7). 

Theorem 2: The system is periodic following a transient period. 
To prove the theorem, we first consider the case when e is 

The following lemma states that, for any initial phase, one of the 

Lemma 3: If a is irrational, there exists an x E R satisfying 

irrational. 

two processes will eventually wait for the resource. 

f Z A ( . )  = gzB(x)  = 1. 

Fig. 5. The functions fta y d .  gzB are displayed on different axes. For 
simplicity, their right-continuity IS not shown in the figure. 

I Resource utilisation by process A 

.... E.. 
-4 
A waiting for the resource 

I 
I 
I 
I 

Resource utilisation by process B 

.I).. 
I Phase +A 

Fig. 6. A waiting point of process A always resets the phase between the 
two processes at +A.  

I Resource utilisation by A 

I 
I 

I 
Resource utilisation by B 

4- - 

- - _  n-. 
I Phase 4~ 

Fig. 7. 
two processes at +B. 

A waiting point of process B alsays resets the phase between the 

Proof of the lemma: Without any loss of generality, we can assume 
that iA = 0. We define the sequence 

x, = ( i ~  + np) mod a, where /3 = /31 + P z .  

If there exists an n such that z, < a1, then f iA( iB + np) = 1 
because ka 5 iB + n,!? < ka + a1, where Q = a1 + c y g .  We also 
haveg,,(iB+np) = gl,(iB) = l,sothatthepointig+nPverifies 
the conditions given in Lemma 3. 

Now, if a l p  is irrational, the sequence zn is dense in the interval 
[0, a] thanks to a Dirichlet argument like that in [6] (see the Appendix 
for a proof of this property). This proves the existence of an n 

0 
Proofofthe theorem: In the case where a l p  is irrational, the 

initial phases of the two processes are arbitrary: i A  and is. However, 
according to Lemma 3 the two intervals 01 and will eventually 
overlap, giving a waiting state. This results in a reset of the phases 
between the two processes to either phase + A  or to phase #JB. After 
this, if we apply Lemma 3 once more, with the new phase, the second 

verifying x, < a l .  This ends the proof of the lemma. 



- 

152 

A 1  I B ... 

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 5 ,  OCTOBER 1995 

I I 
I ‘II: period of the system I ........................................................... 
I I 

I &* I 

Fig. 8. First type of period: Only one process waits for the resource. 

overlapping will reset the phases once more. The lemma is applied 
for the third time, and the third overlapping will reset the phases to 
a phase that has already been set so that the system is periodic. 

In the case where a / p  is rational, either the two requests of the 
resource will never overlap and the process is periodic with period 
lcm(a, p) ,  or the two requests overlap and the phase is changed to 
phase 4,~. or phase dp,. We repeat this analysis twice more, and either 
we end with the same phase as the previous phase or with a periodic 
behavior with no waiting states; in any case, the system is periodic.0 

This proof does not give the value of the period. The Dirichlet 
argument suggests that no closed formula of the period can be found 
in the general case. In the case where a//3 is rational, an easy upper 
bound of the period can be given: lcm(a, p).  

As stated previously, we are interested in finding the sequence 
of allocation to the two processes. As no closed formula of the 
period can be given, we cannot give a closed formula for the 
allocation sequence either. However, we can verify that once again the 
allocation sequence is the “most regular” sequence given the number 
of allocations of the resource to the two processes during one period. 

Let us assume that during one period, the resource is given n times 
to A and k times to B. One can notice that n and k are the “natural” 
frequencies of the system (S, T) within n + k allocations. If there 
are no waiting states, n and k are defined by na = k/3 = lcm(a, p) .  

In the case where the period contains waiting states, by the 
symmetry of the problem we can assume that the period begins with 
a phase 4.~. and ends with phase 4 ~ .  NOW, only two situations are 
possible: The first waiting process during one period is A, in which 
case the period of the system is between these two waiting times 
(see Fig. 8), or the next waiting process is B and the third waiting 
process is A (see Fig. 9). 

In the first case, the period of the system is a multiple of p: 71 = k p .  
As for process A, we define n by na 2 71 < (n+ 1)a. The allocation 
sequence is w = Ac1BAc2B.  . . A C E B ,  where ct = Ti21 - [(i - 
1) As k and n cannot be computed, we can also note that if i < k ,  

The last one, Ck, is slightly different because we have to take into 
C; = - r(2 - and Ck = [ ( k  - 1): + e1 - [ ( k  - I);]. 

account the waiting state of process A at the end of the period. 

Roc*rs A Process B 

Fig. 10. 
IB time units, respectively. 

A system with two inputs. The input transitions fire every I A  and 

e- - - - - - - - !A - -. - - - - - - -. - - > 
Fig. 11.  If I A  > Q I  + Q Z ,  the process A in isolation eventually behaves 
like a system with no inputs but with a longer period: la. The inputs are 
depicted on the lower line. 

In the case where the period also contains a waiting time for process 
B ,  this waiting time is smaller than a1 and therefore cannot alter the 
allocation sequence within one period, which remains the same as 
before. The only difference with the previous case is that now, k is 
also defined by an inequality: k p  < 71 < ( k  + 1)p. 

The sequence c obtained is the most regular integer sequence (up to 
the last Ck. which is cut because of the waiting state). This sequence 
is optimal for various scheduling problems, as in [5]. 

v. INPUTS 

If we add periodic inputs to each of the processes (see Fig. lo), 
then we can show that this system is equivalent to a system without 
any input. Consider process A in isolation with a periodic input of 
period I A .  If I A  > a1 + a2, then the process will eventually wait for 
an input. After this point, the process becomes periodic with period 
I A .  This process can be seen as a process with no input but with 
temporization (a l ,a ; ) ,  where a; = I A  - 011. See Fig. 11. 

If I A  5 cy1 + 012, the process may wait once for the input. 
Afterwards, the input token will always arrive before it is required. 
So, the input does not alter the behavior of process A and can 
be ignored (see Fig. 12). The same argument holds for process B 
with a periodic input every Ip, time units. Therefore, this system 
with the temporizations ( a l , a z , P ~ , P ~ )  and the inputs ( I A , I B )  
is equivalent to a system without inputs with the temporizations 
( a1 ,max(a2 , I~  - al),Pl,max(pz,Ip, -PI ) ) .  

VI. TWO PROCESSES IN SERIES 

In this case, process B has to wait for process A before getting 
the resource. An infinite buffer is placed between the processes (see 



lEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11 ,  NO. 5 ,  OCTOBER 1995 

__ 

153 

I I I hputs 

d . - - - ? A - . - . - .  .- 

Fig. 12. If I A  5 a1 + a ~ ,  the process A in isolation will eventually behave 
as if it had no inputs. 

1 
1 

RocSSA process B 

Fig. 13. A system where an infiniet buffer W is introduced from A to B. 

I I I 
I I I 
e. . -#- . -#- . . . . .* I 

‘ P I  ad B waiiiigfor w 
Fig. 14. If P < a, the system in series eventually becomes periodic, with 
a period a. 

Fig. 13). This case is equivalent to a system where the two processes 
work in parallel. We distinguish between two cases, as follows. If 
a 5 p, then the system is truly equivalent to the parallel one. Indeed, 
if B has to wait once for the input from A, this situation will not 
happen again. After a possible first waiting time for a token in the 
buffer, whenever B wants the resource, the resource has been released 
by A and at least one token has been placed in the buffer. If /3 < a, 
then after some time B will have to wait for the input from A. At that 
point, the system becomes periodic of period a, and the allocation 
sequence during one period is A B  (see Fig. 14). 

VII. CONCLUSION 
In this article, we consider the problem of allocating a single 

resource to two processes in a repetitive manner. The system is 
studied with and without an imposed frequency. For the first case, if 
the required frequencies of each process is some known multiple of 
one another we show that the optimal resource allocation sequence 
is the most regular sequence. On the other hand, if the multiplication 
constant is not known the optimal one can be found that will minimize 
the idle time of the resource. For the second case, only under a 
known priority structure, we show that the system is periodic after a 
transient period and again the optimal sequence is the most regular 

one. We also consider the extensions of this problem to the case 
that includes inputs to each process and to the processes working 
in series. We show that these systems are equivalent to the systems 
discussed before. 

APPENDIX 
We will be using some of the notation and definitions given in 

the article. 
We prove that if is irrational, the sequence xn = (is + 

np) mod(@) is in [O,a) and there exists m such that z, < al .  

Choose n in N with n > 1/a1 and cut the interval [O,a) into 
n subintervals each one of size aln. Now, consider the sequence 
(20 ,  X I , .  . . , x n ) .  First, we remark that these n + 1 numbers are all 
distinct. Indeed, if X k  = zj mod(a) with k > j ,  this means that 

i~ + k p  = i ~  + j p  mod(@) 

( k  - j ) p  =O mod(a) 

so that $is rational. This contradicts the assumption. Second, if 
n + 1 different numbers are being distributed in n intervals, then 
at least two of them fall in the same interval. We get k > j with 
xk - x J  = e mod(cY) and le1 < l / n .  X k  - zJ = e mod(a) implies 
(k - j ) p  = e mod(a), so X L J  = i~ + e mod(@). 

Finally, we can divide a1 - i ~  by e to get a1 -is = ce+r mod(a) 
with c E N and 0 5 r < [el. 

z,.(k-J) = i~ + ce = a1 - r mod(a). As 0 5 T < lei, we can 

This proof can be easily adapted to prove that the sequence (zn) 
is dense in [0, a).  If we want to approach any number X in [0, a )  
within E, choose n in N with n > l / e  and replace a1 - i~ by 
X - i~ in the previous proof. 

conclude ~ , ( k - ~ )  < al. 0 

REFERENCES 

[l] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization 
and Linearity. New York Springer-Verlag, 1992. 

[2] C. Chaouiya, “Outils pour I’analyse de systemes synchronizes,” Ph.D. 
dissertation, Univ. of Nice, INFUA, Sophia Antipolis, France, 1992. 

[3] D. Dubois and K. Stecke, “Dynamic analysis of repetitive decision-free 
discrete event processes: Applications of production systems,” Univ. of 
Michigan, Ann Arbor, Tech. Rep. 543, 1989. 

[4] J. P. Quadrat, G. Cohen, P. Moller, and M. Viot, “Linear system theory 
of discrete-event systems,” in Pmc. 23rd IEEE CDC, Las Vegas, NV, 
vol. 1, pp. 539-544, 1984. 

[5] B. Hajek, “Extremal splittings of point processes,” Math. Operation 
Research, vol. 10, pp. 543-556, 1985. 

[6] G. H. Hardy and E. M. Wright, An Znrroducrion ro rhe Theory of 
Numbers. Oxford Oxford Univ. Press, 1983. 

[7] H. P. Hillion and J. M. hoth, “Performance evaluation of job shop 
systems using timed event graphs,” IEEE Trans. A~romar. Conrr., vol. 
34, pp. 3-9, 1989. 

[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proc. 
ZEEE, vol. 77, no. 4, 1984. 

[9] 5. L. Peterson, “Petri nets,” ACM Compur. Sum., vol. 9, no. 3, 1977. 
[lo] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asyn- 

chronous concurrent systems using Petri nets,” IEEE Trans. Soffware 
Eng., vol. SE-6, pp. -9, 1980. 


