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Considered are semi-Markov decision processes (SMDPs) with finite state and action
spaces. We study two criteria: the expected average reward per unit time subject to
a sample path constraint on the average cost per unit time and the expected
time-average variability. Under a certain condition, for communicating SMDPs,
we construct (randomized) stationary policies that are e-optimal for each criterion;
the policy is optimal for the first criterion under the unichain assumption and the
policy is optimal and pure for a specific variability function in the second
criterion. For general multichain SMDPs, by using a state space decomposition
approach, similar results are obtained.

1. INTRODUCTION

We consider semi-Markov decision processes (SMDPs) with finite state and action
spaces. Let Rs be the reward function at time s. Rs can be an impulse function corre-
sponding to the reward earned immediately at a transition epoch or it can be a step
function between transition epochs corresponding to the rate of reward. The great
majority of the literature in this area is concerned with finding a policy u that
maximizes

f1(u) W lim inf
t!1

1
t

Eu

ðt

0
Rs ds

� �
: (1)
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f1 denotes the average expected reward [10, 11, 20, 22, 27, 35, 37]. The follow-
ing alternative to f1 is given by Jewell [23], Ross [30, 31], and Mine and Osaki
[28] as

f2(u) W lim inf
n!1

Eu

Xn

m¼1

Rm

" #

Eu½Tn�
; (2)

where Rm denotes the reward earned between the (m 2 1)st and the (m)th epochs
and Tm denotes the (m)th transition time. The performance measure f2 is also used
by other researchers (see e.g., [6, 15–17, 21, 22, 29]). In [18], f2 is referred to as
the ratio-average reward. A sufficient condition for these two definitions to
coincide under stationary policies requires that every stationary policy generates
a semi-Markov chain with only one irreducible class [28, 30].

Although f1 is clearly the more appealing criterion, it is easier to write the opti-
mality equations when establishing the existence of an optimal pure policy under cri-
terion f2 [34, 35, 39]. On the other hand, for finite-state and finite-action SMDPs
there exists an optimal pure policy under f1 [11, 34, 39], whereas such an optimal
policy might not exist under f2 in a general multichain SMDP [24].

Even though there is considerable research on the nonstandard criteria for average
reward Markov decision processes (MDPs), the same cannot be claimed for the
average reward SMDPs. A variance-type objective function for the discrete time
MDPs has been studied (see e.g., [3, 7, 19, 38]). Constraints have been introduced
for the average reward MDPs (see e.g., [1, 4, 13, 14, 25, 32, 33, 37]). For the
average reward SMDPs, only the constrained problem has been investigated [5, 16,
18]. Beutler and Ross [5, 6] considered the ratio-average reward with a constraint
under a condition stronger than the unichain condition. In [18], Feinberg examined
the problem of maximizing both f1 and f2 subject to a number of constraints.
Under the condition that the initial distribution is fixed, he showed that for both cri-
teria, there exist optimal mixed stationary policies when an associated linear program
(LP) is feasible. The mixed stationary policies are defined as policies with an initial
one-step randomization applied to a set of pure policies. Obviously, such a policy is
not stationary. Feinberg provided a linear programming algorithm for the unichain
SMDP under both criteria. However, there is a need for an efficient algorithm that
would locate an optimal or e-optimal stationary policy for the communicating and
multichain SMDPs under f1 with constraints.

In this article we study the following criterion:

c (u) W Eu lim inf
t!1

1
t

ðt

0
Rs ds

� �
(3)

subject to the sample path constraint

Pu lim sup
t!1

1
t

ðt

0
Cs ds � a

� �
¼ 1; (4)
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where Cs denotes the cost function at time s. Fatou’s lemma immediately implies that
c (u) � f1(u) holds for all policies. We however, prove that for a large class of pol-
icies, the two rewards are equal. We show that an e-optimal randomized stationary
policy can be obtained for the general SMDP, whereas such a policy might not
exist for the expectation problem.

We also consider the problem of locating a policy that maximizes over all pol-
icies, u, the following expected average reward:

n(u) W Eu lim inf
t!1

1
t

ðt

0
h Rs;

1
t

ðt

0
Rq dq

� �
ds

� �
; (5)

where h(.,.) is a function of the current reward at time s and the average reward over
an interval that includes time s. Throughout, we assume that h(.,.) is a continuous
function. We will refer to n(u) as the expected time-average variability. We show
that an e-optimal stationary policy can be obtained for the general SMDP. If
h(x, y) ¼ x 2 l(x 2 y)2, then the optimal policy is a pure policy. Note that, in this
case, maximizing n(u) corresponds to maximizing the expected average reward penal-
ized by the expected average variability.

This article is organized as follows. In Section 2 we introduce the notation. In
Section 3 we present our preliminary results, which will be used in the proceeding
sections and summarize the known facts about the decomposition and sample-path
theory. In Section 4, mathematical programs that will be utilized are constructed
and the upper bounds for the expected average reward and the expected variability
are established. Communicating SMDPs are investigated in Section 5, and it is
shown that there exist e-optimal stationary policies for both criteria. Multichain
SMDPs are considered in Section 6, an intermediate problem is introduced, and the
algorithm to locate the e-optimal stationary policies is given. Finally, we conclude
in Section 7 with a brief discussion on the sample-path problem with multiple
constraints.

2. NOTATIONS

Denote fXm, m � 0g for the state process, which takes values in a finite state space
S. At each epoch m, the decision-maker chooses an action Am from the finite action
space A. The sojourn time between the (m 2 1)st and the (m)th epochs is a random
variable and denoted by Ym. The underlying sample space V ¼ fS �A�(0, 1)g1
consists of all possible realizations of states, actions, and the transition times.
Throughout, the sample space will be equipped with the s-algebra generated
by the random variables fXm, Am, Ymþ1; m � 0g. Denote Pxay, x [ S, a [ A,
y [ S, for the law of motion of the process; that is, for all policies u and all
epochs m,

PufXmþ1 ¼ yjX0;A0; . . . ;Xm ¼ x;Am ¼ ag ¼ Pxay:
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Also conditioned on the event that the next state is y, Ymþ1 has the distribution
function Fxay(.); that is,

PufYmþ1 � tjX0;A0;Y1; . . . ;Xm ¼ x;Am ¼ a;Xmþ1 ¼ yg ¼ Fxay(t):

Assume that Fxay (0) , 1.
The process fSt, Bt : t � 0g, where St is the state of the process at time t and

Bt is the action taken at time t, is referred to as the SMDP. Let Tn ¼
P

m¼1
n Ym. For

t [ [Tm, Tmþ1), clearly

St ¼ Xm; Bt ¼ Am:

A policy is called stationary if the decision rule at each epoch depends only on
the present state of the process; denote fxa for the probability of choosing action a
when in state x. A stationary policy is said to be pure if for each x [ S, there is
only one action a [ A such that fxa ¼ 1. Let U, F, and G denote the set of all policies,
stationary policies, and pure policies, respectively.

Under a stationary policy f, the state process fSt : t � 0g is a semi-Markov
process, and the process fXm : m [ N g is the embedded Markov chain with transition
probabilities

Pxy( f ) ¼
X
a[A

Pxay fxa:

Clearly, the process fSt, Bt : t � 0g is also a semi-Markov process under a stationary
policy f with the embedded Markov chain fXm, Am : m [ N g.

Under a stationary policy f, state x is recurrent if and only if x is recurrent in
the embedded Markov chain; similarly, x is transient if and only if x is transient
for the embedded Markov chain. A SMDP is said to be unichain if the
embedded Markov chain for each pure policy is unichain [i.e., if the
transition matrix P(g) has at most one recurrent class plus (a perhaps empty) set of tran-
sient states for all pure policies g]. Similarly, a SMDP is said to be communicating
if P( f ) is irreducible for all stationary policies that satisfy fxa . 0, for all x [ S,
a [ A.

Let t(x, a) define the expected sojourn time,

t (x; a) W Eu½YmjXm�1 ¼ x;Am�1 ¼ a�

¼
ð1

0

X
y[S

PufXm ¼ y;Ym . tjXm�1 ¼ x;Am�1 ¼ ag dt

¼
ð1

0
1�

X
y[S

PxayFxay(t)

" #
dt:
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Let Wt(x, a) denote the random variables representing the state-action intensities,

Wt(x; a) W
1
t

ðt

0
1f(Ss;Bs) ¼ (x; a)g ds;

where 1f.g denotes the indicator function. Let U0 denote the class of all policies u
such that fWt(x, a); t � 0g converges Pu-almost surely (Pu-a.s.) for all x [ S and
a [ A. Thus, for u [ U0, there exist random variables fW(x, a)g such that

lim
t!1

Wt(x; a) ¼ W(x; a);

Pu-a.s. for all x and a. Let U1 be the class of all policies u such that the expected
state-action intensities fEu[Wt(x, a)]; t � 0g converge for all x and a. For u [ U1, denote

wu(x; a) ¼ lim
t!1

Eu½Wt(x; a)�:

From Lebesgue’s Dominated Convergence Theorem, U0 [ U1.
A well-known result from renewal theory (see Çinlar [9]) is that if fYt ¼ (St, Bt) :

t � 0g is a homogeneous semi-Markov process and if the embedded Markov chain
is unichain, then the proportion of time spent in state y; that is,

lim
t!1

1
t

ðt

0
1fYs ¼ yg ds

exists almost surely. Since under a stationary policy f the process fYt ¼ (St, Bt) :
t � 0g is a homogeneous semi-Markov process, if the embedded Markov decision
process is unichain, then the limit of Wt(x, a) as t goes to infinity exists and the
proportion of time spent in state x when action a is applied is given as

W(x; a) ¼ lim
t!1

Wt(x; a) ¼ t (x; a) Z (x; a)X
x;a

t (x; a) Z (x; a)
;

Pf -a.s. for all x and a, where Z(x, a) denotes the associated state-action frequencies.
Let fzf (x, a); x [ S, a [ Ag denote the expected state-action frequencies; that is,

z f (x; a) ¼ lim
n!1

Ef
1
n

Xn

m¼1

1fXm�1 ¼ x;Am�1 ¼ ag ¼ px( f ) fxa;

where px( f ) is the steady-state distribution of the embedded Markov chain P( f ).
The long-run average number of transitions into state x when action a is applied

per unit time is

vf (x; a) ¼ px( f )fxaX
x;a

t (x; a)px( f ) fxa

¼ zf (x; a)X
x;a

t (x; a)zf (x; a)
: (6)

This gives wf (x, a) ¼ t (x, a) vf (x, a).
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The decision-maker earns an immediate reward R(Xm, Am) and a reward with rate
r (Xm, Am) until the (m þ 1)st epoch. Thus,

Rmþ1 ¼ R(Xm;Am)þ r(Xm;Am)Ymþ1

is the reward earned during the (m þ 1)st transition [5, 36]. Similarly, there is an
immediate cost C(Xm, Am) and a cost with rate c(Xm, Am) with

Cmþ1 ¼ C(Xm;Am)þ c(Xm;Am)Ymþ1:

Hence, at any epoch if the process is in state x [ S and action a [ A is chosen, then
the reward earned during this epoch is represented by r̄ (x, a) W R(x, a) þ r (x, a)
t(x, a). Similarly, the cost during this epoch is represented by c̄(x, a) W C(x, a) þ
c(x, a)t (x, a).

We conclude this section with a fact that will be used in the subsequent theorems.
It follows directly from the law of large numbers for martingale differences (see,
e.g., Loeve [26]):

For all policies u [ U, if
P

m¼1
1 [(var Ym)/m2] , 1,

lim
n!1

1
n

Xn

m¼1

½d(Xm�1;Am�1)Ym � d(Xm�1;Am�1)t (Xm�1;Am�1)� ¼ 0 (7)

holds Pu-a.s. with d(.,.) as an arbitrary bounded function on S � A.

Thus, we need the following assumption on the sojourn times.

ASSUMPTION 1: For all policies u [ U,

X1
m¼1

varYm

m2
, 1:

This condition is essentially equivalent to the assumption that Eu [Ym
2jXm21 ¼ x,

Am21 ¼ a] , 1 for all x [ S and a [ A.

3. PRELIMINARY RESULTS

In this section we establish some facts that will be used later in the analysis.
Proposition 1 shows that the expected average reward (average cost) can be written
in terms of the expected state-action frequencies fzu(x, a)g (fZ(x, a)g).

PROPOSITION 1: Assume that the SMDP is unichain. For any policy u [ F, the
expected average reward and the average cost are given respectively as

c (u) ¼

X
x;a

�r (x; a)zu(x; a)

X
x0;a0

t (x0; a0)zu(x0; a0)
¼
X
x;a

�r (x; a)vu(x; a) (8)
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and

lim sup
t!1

1
t

ðt

0
Cs ds ¼

X
x;a

�c(x; a)Z(x; a)

X
x0;a0

t (x 0; a0)Z(x 0; a0)
, (9)

Pu-a.s.

PROOF: Fix a policy u [ F. Equation (8) is written as

c (u)¼ Eu lim inf
t!1

1
t

ðt

0
Rs ds

� �

¼ Eu lim inf
t!1

1
t

Xn(t)

m¼0

R(Xm;Am)þ
Xn(t)�1

m¼0

r (Xm;Am)Ymþ1þ (t� tn(t))r (Xn(t);An(t))

" #" #

¼ Eu lim inf
t!1

1
t

X
x;a

R(x;a)
Xn(t)

m¼0

1fXm ¼ x;Am ¼ ag
""

þ r (x;a)t (x;a)
Xn(t)�1

m¼0

1fXm ¼ x;Am ¼ ag
##

¼
X
x;a

R(x;a)vu(x;a)þ
X
x;a

r (x;a)t (x;a)vu(x;a);

where n(t) W maxfm : Tm � tg denotes the number of transitions up to time t. Note
that as t goes to infinity, so does n(t). Thus, the last term in the second equality
goes to zero as t goes to infinity. Equation (9) is similarly obtained. B

Now, consider the expected time-average variability n(u). The following
proposition shows that the time-average variability can also be expressed in terms
of the long-run state-action frequencies fZ(x, a)g. Let Ct denote the time average
reward random variable (r.v.) up to time t:

Ct W
1
t

ðt

0
Rs ds

and

C W
X
x;a

�r(x; a)V(x; a):
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PROPOSITION 2: For all u [ U0,

lim inf
t!1

1
t

ðt

0
h Rs;

1
t

ðt

0
Rq dq

� �
ds

¼
X
x;a

h �r (x; a);

X
y;b

�r (y; b)Z(y; b)

X
x0;a0

t (x0; a0)Z(x0; a0)

2
66664

3
77775Z(x; a)

0
BBBB@

1
CCCCA

�
"X

x0;a0
t (x0; a0)Z(x0; a0)

#�1

;

Pu-a.s. If h(x, y) ¼ x 2 l(x 2 y)2, then for u [ U0, we have

n(u) ¼ c (u)� l lim
t!1

1
t

ðt

0
Eu Rs �

1
t

ðt

0
Rq dq

� �2

ds:

PROOF: Fix a policy u [ U0. Similar to Proposition 1, it is straightforward to establish
that

lim inf
t!1

1
t

ðt

0
h(Rs;C) ds ¼

X
x;a

h½�r (x; a);C�V(x; a);

Pu-a.s. The rest of the proof follows from Proposition 1 in [3]. B

The proof of the following proposition that defines c and n for the multichain
case, is straightforward.

PROPOSITION 3: Let f be a stationary policy and let R1, . . . , Rq be the recurrent
classes associated with P( f ). Denote (px

i( f ); x [Ri) for the equilibrium probability
vector associated with class i, i ¼ 1, . . . , q. Further, denote

ci ( f ) ¼

X
x;a

�r (x; a)p i
x( f )fxaX

y;b

t (y; b)p i
y( f )fyb

: (10)

Then

c ( f ) ¼
Xq

i¼1

PffXn [ Ri a:s:gci( f ) (11)
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and

n( f ) ¼
Xq

i¼1

PffXn [ Ri a:s:g
X
x;a

h½�r(x; a);ci( f )�p i
x( f )fxaX

y;b

t ( y; b)p i
y( f )fyb

: (12)

If SMDP is unichain, then

n( f ) ¼
X
x;a

h½�r(x; a);c ( f )�px( f )fxaX
y;b

t ( y; b)py( f )fyb

: (13)

Note that Schäl [34] showed in Lemma 2.7 that for finite-state finite-action multichain
SMDPs under a pure policy, f1 is equivalently given by Eqs. (10) and (11), which
define the expected average reward c.

Decomposition and Sample Path Theory

The following notation will be used in the subsequent sections. A set C # S
is said to be a strongly communicating class if (1) C is a recurrent class for some
stationary policy, (2) C is not a proper subset of some C0 for which (1) holds true.
Let fC1, . . . , CIg be the collection of all strongly communicating classes. Let T be
the (possibly empty) set of states that are transient under all stationary policies. It
is shown in [33] that fC1, . . . , CI, T g forms a partition of the state space S. The
decomposition ideas was first introduced by Bather [2]. For each i ¼ 1, . . . , I,
denote the for each x [ Ci the set

F x ¼ fa [ A : Pxay ¼ 0 for all y � Cig:

The following result is also proved in [33].

PROPOSITION 4: For all policies u,

XI

i¼1

PufXn [ Ci a:s:g ¼ 1 (14)

and

PufAn [ FXn a:s: g ¼ 1: (15)

For each i ¼ 1, . . . , I, define a new SMDP, called SMDP-i, as follows: The state
space is Ci; for each x [ Ci, the set of available actions is given by the state-dependent
action spaces Fx; the law of motion Pxay, the conditional sojourn time distribution
Fxay(.), the reward function r̄ (x, a), and the cost function c̄(x, a) are the same as
earlier but restricted to Ci and Fx for x [ Ci. Now, each SMDP-i is communicating
for all i ¼ 1, . . . , I. For each SMDP-i, let ni(u) be the expected average variability
under policy u.
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4. OPTIMIZATION RESULTS

In the constrained problem, say T (1), we seek to maximize the expected average
reward c (u) [Eq. (3)] over the policies that satisfy the sample-path constraint
[Eq. (4)]. Let Uf denote the class of feasible policies. The optimal constrained
average reward is given as

c� ¼ sup
u[Uf

c (u):

A policy u* [ Uf is said to constrained average optimal if c (u*) ¼ c*. A policy
u [ Uf is said to be e-average optimal if c (u) . c* 2 e. The second problem,
T (2), maximizes the expected time-average variability [Eq. (5)]. Let

n� ¼ sup
u[U

n(u):

A policy u* is optimal for n(.) if n(u*) ¼ n*. An e-optimal policy for n(.) is defined as
a policy u such that n(u) . n*2e.

Note that by choosing a to be sufficiently large, the unconstrained problem can
be viewed as a special case of the constrained optimization problem. Also, by choos-
ing h(1)(x, y) ¼ x, we have n(u) ¼ c (u). Thus, in the next section we will present the
general problem of maximizing n( j )(u) subject to the sample-path constraint (4),
where j ¼ 1 corresponds to the constrained problem with n(1)(u) ¼ c (u) and j ¼ 2
corresponds to the expected average variability with n(2)(u) ¼ n (u) and a(2) ¼1.

For each j ¼ 1, 2 and i ¼ 1, . . . , I, consider the following fractional program with
decision variables z(x, a), x [ Ci, a [ Fx. Let dxy ¼ 1 if x ¼ y and dxy ¼ 0 otherwise.

Program Ti
( j )

t ( j)
i ¼ max

X
x[Ci

X
a[F x

h(j) �r(x; a);

X
y[Ci;b[F y

�r(y; b) z (y; b)

X
x 0[Ci;a0[F x 0

t (x 0; a0) z (x 0; a0)

2
664

3
775 z (x; a)

X
x 0[Ci;a0[F x 0

t (x 0; a0) z (x 0; a0)

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(16)

s.t.
X

x[Ci;a[F x

(dxy � Pxay) z (x; a) ¼ 0; y [ Ci (17)

X
x[Ci;a[F x

z(x; a) ¼ 1; (18)
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X
x[Ci;a[F x

c̄(x; a)z(x; a)

X
x0[Ci;a0[F x0

t (x 0; a0)z(x 0; a0)
� a ( j); (19)

z(x; a) � 0 x [ Ci; a [ F x: (20)

For each h � 0, we will also need to refer to the following fractional program with
decision variables z(x, a), for all x[ S, a [ A.

Program Qh
( j )

q(j)
h ¼ max

X
x[S;a[A

h ( j) �r(x; a);

X
y[S;b[A

�r(y; b) z (y; b)

X
x 0;a0

t (x 0; a0) z (x 0; a0)

2
664

3
775 z (x; a)

X
x 0;a0

t (x 0; a0) z (x 0; a0)

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(21)

s.t.
X

x[S;a[A

(dxy � Pxay)z(x; a) ¼ 0; y [ S; (22)

X
x[S;a[A

z(x; a) ¼ 1; (23)

X
x[S;a[A

�c(x; a)z(x; a)

X
x 0[S;a0[A

t (x 0; a0)z(x 0; a0)
� a(j); (24)

z(x; a) � h; x [ S; a [ A: (25)

We will refer to the feasible regions of Program Ti
( j ) and Program Qh

( j ) simply as
Ti

( j ) and Qh
( j ), respectively. Note that the objective functions for both sets of math-

ematical programs are continuous functions over polytopes. As long as the cost con-
straint is satisfied for some fz(x, a)g, then Ti

(1) for i ¼ 1, . . . , I and Q0
(1) are nonempty.

Note that Ti
(2) for i ¼ 1, . . . , I and Q0

(2) are always nonempty. For a given solution
fz(x, a)g, we will write

z(x) ¼
X

a

z(x; a):

First, we consider the constrained problem, T (1) given by Eqs. (3) and (4). Thus, use
h(1)(x, y) ¼ x in Eqs. (16) and (21). The following lemmas provide bounds on f(u)
and n(u). The proof of Lemma 2 is similar to the proof of Lemma 1, thus only an
outline of the proof will be given.
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LEMMA 1: If Uf is nonempty, then for all i ¼ 1, . . . , I, Ti
(1) is nonempty, and for

u [ Uf ,

Pu lim inf
t!1

1
t

ðt

0
Rs ds � t(1)

i jXn [ Ci a:s:

� �
¼ 1 (26)

and, consequently

c (u) �
XI

i¼1

t(1)
i PufXn [ Ci a:s:g: (27)

PROOF: Fix a policy u [ Uf. Let G be the set of all sample paths v ¼ (x0, a0, t1, x1, a1,
t2, . . .) that satisfy the following:

(i) an [ Fxn
, 8 n � N for some positive integer N

(ii)
P

x[S
P

a[A Pxay Z(x, a) ¼
P

a[A Z( y, a), 8 y[ S
(iii) lim supt!1(1/t)

Ð
0
t Cs ds � a(1).

Combining Eq. (14) with Eq. (7) where d(.,.) ¼ 1 and Ym ¼ 1fXm ¼ yg and the fact
that u is feasible yields

Pu(G) ¼ 1:

Let (x0, a0, t1, x1, a1, t2, . . .) [ fXn[ Ci a.s.g > G and define

Zn(x; a) W
1
n

Xn

m¼1

1fXm�1 ¼ x;Am�1 ¼ ag:

Since 0 � Zn(x, a) � 1, by the standard compactness argument there exists a
subsequence fNk(v)g along which fZn(x, a; v)g converges to some Z 0(x, a; v) on
F ¼ fXn [ Ci a.s.g > G; that is,

lim
k!1

ZNk (x; a) ¼ Z 0(x; a): (28)

By definition, it follows that

Z 0(x; a) ¼ 0 whenever x � Ci or a � F x

on the set F. Thus, on F,X
x[Ci

X
a[F x

PxayZ 0(x; a) ¼
X

a[F y

Z 0(y; a); 8 y [ Ci;

and X
x[Ci

X
a[F x

Z 0(x; a) ¼ 1; Z 0(x; a) � 0; 8 x [ Ci; a [ F x:
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Observe that for any bounded function d(.,.) on F,

1
Nk

XNk

m¼1

d(Xm�1;Am�1)Ym �
X
x;a

d(x; a)t (x; a)Z 0(x; a)

�����
�����

� 1
Nk

XNk

m¼1

½d(Xm�1;Am�1)Ym � d(Xm�1;Am�1) t (Xm�1;Am�1)�
�����

�����
þ 1

Nk

XNk

m¼1

d(Xm�1;Am�1) t (Xm�1;Am�1)�
X
x;a

d(x; a)t (x; a)Z 0(x; a)

�����
�����;

which combined with Eq. (7) and Eq. (28) gives

lim
k!1

1
Nk

XNk

m¼1

d(Xm�1;Am�1)Ym ¼
X
x;a

d(x; a)t (x; a)Z 0(x; a):

From this equation the following holds:

lim
k!1

1
TNk

XNk

m¼1

Cm ¼
lim
k!1

1
Nk

XNk

m¼1

½C(Xm�1;Am�1)þ c(Xm�1;Am�1)Ym�

1
Nk

XNk

m¼1

Ym

¼

X
x;a

�c(x; a)Z 0(x; a)

X
x;a

t (x; a)Z 0(x; a)
:

Also, on F,

a(1) � lim sup
t!1

1
t

ðt

0
Cs ds

� lim
k!1

1
TNk

XNk

m¼1

Cm ¼

X
x;a

�c(x; a)Z 0(x; a)

X
x;a

t (x; a)Z 0(x; a)

Thus, Z 0(x, a) is in the feasible set implying that T (1)
i is nonempty. Hence, on F,X

x;a

�r (x; a)Z 0(x; a)

X
x;a

t (x; a)Z 0(x; a)
� t(1)

i :
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In a similar manner,

lim inf
t!1

1
t

ðt

0
Rs ds � lim

k!1

1
TNk

XNk

m¼1

Rm ¼

X
x;a

�r (x; a)Z 0(x; a)

X
x;a

t (x; a)Z 0(x; a)
;

which gives the desired result. Combining Eq. (26) with Proposition 4 gives Eq. (27).

Next, we consider the expected time-average variability criterion. B

LEMMA 2: For all i ¼ 1, . . . , I and for all policies u, we have

Pu lim inf
t!1

1
t

ðt

0
h Rs;

1
t

ðt

0
Rq dq

� �
ds � t(2)

i jXn [ Ci a:s:

� �
¼ 1 (29)

and, consequently,

n(u) �
XI

i¼1

t(2)
i PufXn [ Ci a:s:g: (30)

PROOF: The proof is similar to the proof of Lemma 1. We only need to note that

lim inf
t!1

1
t

ðt

0
h Rs;

1
t

ðt

0
Rq dq

� �
ds

� lim
k!1

1
TNk

XNk

m¼1

h Rm;
1

TNk

XNk

l¼1

Rl

 !

¼ lim
k!1

1
TNk

XNk

m¼1

h Rm; lim
k!1

1
TNk

XNk

l¼1

Rl

 !

¼

X
x[Ci

X
a[F x

h �r(x; a);

X
y[Ci

X
b[F y

�r (y; b)Z 0(y; b)

X
x 0[Ci

X
a0[F x 0

t (x 0; a0)Z 0(x 0; a0)

2
664

3
775Z 0(x; a)

X
x 0[Ci

X
a0[F x 0

t (x 0; a0)Z 0(x 0; a0)
;

on F. B
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5. THE COMMUNICATING CASE

We assume that the SMDP is communicating. This implies that there is only one
strongly communicating class and that S ¼ C1. The analysis of this section draws
on results and observations from [32].

In this section we will show that, in general, there does not exist an optimal
stationary policy for both criteria. Instead, we show that an e-optimal stationary
policy can be constructed. First, we consider the constrained problem: Eqs. (3) and
(4). Let h(1)(x, y) ¼ x in Eqs. (16) and (21).

PROPOSITION 5: Fix h � 0 and let f zh(x, a)g be an optimal extreme point for Q(1)
h .

Define a policy fh by the transformation

fh ¼
zh(x; a)
zh(x)

if zh(x) . 0

uniformly over the actions otherwise:

8<
: (31)

Then

X
x

zh(x)Pxy( fh) ¼ zh(y); (32)

X
x

zh(x) ¼ 1: (33)

If P(f h) is unichain, then f h[ Uf and Pfh {lim inft!1(1/t)
Ð t

0Rs ds ¼ qh
(1)g ¼ 1.

In particular, if P( f 0) is unichain, then f 0 is an optimal stationary policy for the
constrained problem.

PROOF: It is straightforward to show equations (32) and (33). If P( fh ) is unichain,
there is a unique probability vector p ( fh ) associated with P( fh ). Hence, px

( fh ) ¼ zh(x), giving Pf h-almost surely

lim sup
t!1

1
t

ðt

0
Cs ds ¼

X
x;a

�c(x; a)px( fh)f hxaX
x;a

t(x; a)px( fh)f hxa

¼

X
x;a

�c(x; a)zh(x; a)

X
x;a

t (x; a)zh(x; a)
� a(1):
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In a similar manner, we have Pfh-a.s.

lim sup
t!1

1
t

ðt

0
Rs ds ¼

X
x;a

�r(x; a)zh(x; a)

X
x;a

t (x; a)zh(x; a)
¼ q(1)

h B

Only the outline of the proof of the following theorem will be given since it follows
the proofs of Propositions 5–7 in [32].

THEOREM 1: Suppose that the SMDP is communicating: Then Uf is nonempty if and
only if Q(1)

0 is nonempty. If Q(1)
0 is nonempty, then for each e . 0, there exists an

e-optimal stationary policy for the constrained problem.

PROOF: Proposition 5 proves the (only if) part. To prove the (if) part assume that
fz0(x, a)g is an optimal extreme point of Q(1)

0 . Let f 0 be the policy obtained via
transformation (31). It follows from Eq. (32) that the set of states where z0(x) .

0 is a closed set, and by Lemma 2 of [32], all states outside of this closed
set are transient. This closed set can be composed of the union of m
recurrent classes R1, . . . , Rm associated with P( f 0). For each recurrent class,
we can define

dk ¼

X
x[Rk

X
a

�c(x; a)z0(x; a)

X
x[Rk

X
a

t (x; a)z0(x; a)
:

The value dk has the interpretation of being the average cost per unit time, given that
the process has entered Rk. Let l ¼ arg min1� k�m dk. Then since fz0(x, a)g is feasible
for Q(1)

0 , we have dl � a(1). Since dk can be greater than a(1) for some k, f 0 does
not necessarily belong to Uf. However, we can define a stationary policy f̃ that is
equal to f 0 in Rl, and outside Rl it takes every available action with equal probability.
Clearly, since the SMDP is communicating, Rl is the only recurrent class associated
with P( f̃ ) and f̃ is in Uf. Thus, Uf is nonempty.

For the second part of the theorem, we assume that Q(1)
0 is nonempty. Using

the machinery developed in [32], whenever there exists a policy that strictly meets
the constraint, one can construct a feasible stationary policy that chooses every
action with positive probability and gives rise to an irreducible Markov chain.
Otherwise, the stationary policy f 0 given by the transformation (31) gives rise to a uni-
chain P( f 0); thus, f 0 is the optimal policy.

Thus, we assume that there exists a policy that strictly meets the constraint. In this
case, there exists an z . 0 such that for each h that satisfies 0 , h , z, there is a fea-
sible solution for Q(1)

h , and P( f h) is irreducible for f h obtained via transformation (31).
From Proposition 5, we have f h [ Uf and Pfh flim inft!1 (1/t )

Ð
0
t Rs ds ¼ qh

(1) ¼ 1g.
To prove that limh!0 qh

(1) ¼ q0
(1), we can transform the fractional program into a linear
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program using transformation (6) for vfh [8, 12]. Then the desired continuity holds by
the piecewise linearity and convexity of the objective function with respect to the
right-hand-side value of h/

P
x, a t(x, a). B

Next, we present the mathematical programs obtained via transformation (6)
explicitly, in terms of the decision variables v(x, a),

Program LTi
( j)

t ( j)
i ¼ max

X
x[Ci

X
a[F x

h ( j)

"
�r (x; a);

X
y[Ci;b[F y

�r (y; b)v(y; b)

#
v(x; a)

8<
:

9=
;

s.t.
X

x[Ci;a[F x

(dxy � Pxay)v(x; a) ¼ 0; y [ Ci

X
x[Ci;a[F x

t (x; a)v(x; a) ¼ 1;

X
x[Ci;a[F x

�c(x; a)v(x; a) � a( j);

v(x; a) � 0; x [ Ci; a [ F x:

For each h � 0, we also define the following program with decision variables
v(x, a), x [ S, a [ A.

Program LQh
( j )

q ( j)
h ¼ max

X
x[S;a[A

h ( j)

"
�r (x; a);

X
y[S;b[A

�r (y; b)v(y; b)

#
v(x; a)

( )

s.t.
X

x[S;a[A

(dxy � Pxay)v(x; a) ¼ 0; y [ S;

X
x[S;a[A

t (x; a)v(x; a) ¼ 1;

X
x[S;a[A

�c(x; a)v(x; a) � a ( j);

v(x; a) � h; x [ S; a [ A:

Now, we can present the following procedure to locate the optimal or near
optimal policies for the constrained problem.
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Step 1: Solve the LP LQ0
(1) by the simplex method. If LQ0

(1) is not feasible, then
there does not exist a policy that meets the sample path constraint, stop; otherwise
go to Step 2.
Step 2: Let f v0 (x, a) g be an optimal extreme point for the LP LQ0

(1) and let f 0 be
the corresponding stationary policy obtained via transformation (31). If P( f 0) is
unichain, then f 0 is an optimal stationary policy, stop; otherwise go to Step 3.
Step 3: Solve the parametric LP LQ(1)

h , h � 0 over some interval [0, d] beginning
with h ¼ 0. Then employ the transformation (31) to obtain an e-optimal station-
ary policy for e as small as desired.

For the second criterion, we consider that the right-hand-side value of the cost
constraint is equal to infinity; that is, a(2) ¼1 and the objective function is equal
to n(u). We have the following lemma, which easily follows from the invariance of
the steady-state distribution.

LEMMA 3: Let z be a feasible solution for Program LQ0
(2) and let f be defined as in

Eq. (31). If P( f ) is unichain, then

n( f ) ¼

X
x[S

X
a[A

h(2) �r(x; a);

X
x;a

�r (x; a)z(x; a)

X
x;a

t (x; a)z(x; a)

2
664

3
775z(x; a)

X
x[S

X
a[A

t (x; a)z(x; a)
:

For the communicating SMDP Qh
(2), consequently the feasible region of program

LQh
(2) is nonempty for all h [ [0, d] for some d . 0. Now for each h, let vh be an

optimal solution to Program LQh
(2). If there is an optimal extreme point solution to

Program LQ(2)
0 , further require that v0 to be an extreme point. For each h [ [0,d],

let f h be defined from vh according to transformation given in Eq. (31).

THEOREM 2: Fix e . 0. If the SMDP is communicating, then for h . 0 sufficiently
small, the stationary policy f h is e-optimal for n(u). If, in addition, h(2)(x,y) ¼ x 2

l(x – y)2 with l . 0, then the policy f 0 is the optimal pure policy for the expected
average variability criterion.

PROOF: Noting that the objective function of program LQ(2)
h is continuous over the

feasible region of Program LQ0
(2), the proof follows from the proof of Theorem 1

in [3]. B
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6. MULTICHAIN SMDPs

In this section we impose no restrictions on the law of motion Pxay, x [ S, a [ A, and
y [ S. We now construct e-optimal stationary policies for the constrained problem
and for the expected average variability problem. Since the arguments are similar
for both criteria, we will present the combined results. The construction of the
optimal policy follows closely the developments for the MDP problem in [33];
thus, we will only give the outlines of the proofs.

Recall that SMDP-i is communicating. By Theorems 1 and 2 we can construct an
e-optimal stationary policy fi

( j) for each SMDP-i, i ¼ 1, . . . , I, and for either criterion,
j ¼ 1, 2. Recall that ti

( j) is the value of Program LTi
( j). We will make the following

modification to ti
(1) in the constrained problem. Although ti

(1) is assigned to each com-
municating class i whenever program LTi

(1) has a feasible solution, if there does not
exist any feasible policy for program LTi

(1), then ti
(1) ¼ 21 is assigned to discourage

the process from going into class Ci.
Consider the problem of finding a policy that maximizes the following time-

average expected reward for each criterion:

b( j)(u) ¼ lim inf
n!1

1
n

Xn

m¼1

Eu

XI

i¼1

t( j)
i 1fXm�1 [ Cig

" #
:

This problem is referred as the intermediate SMDP. At this stage, the decision-maker
decides which communicating class generates the maximum reward while satisfying
the constraint. It is known that there exists an optimal pure policy g( j) for each
criterion that can be found by policy improvement, value iteration, or linear program-
ming. Let

H(j) ¼ fi : Ci contains a recurrent class under P( g( j))g:

Modify g( j) so that Ci is closed for each i [ H ( j) and so that g( j) remains optimal for
the intermediate problem (see [33]).

We now construct stationary policy f (1)* ( f (2)*) as follows: When in state x [ Ci,
i [ H (1) (H (2)), apply fi

1 ( fi
2); otherwise, apply g(1) (g(2)). The main result is as

follows:

THEOREM 3: The stationary policy f (1)* ( f (2)*) is e-optimal for c (u) (n(u)).

PROOF: Employing Eq. (14) it can be shown that

b ( j)(u) ¼
XI

i¼1

t( j)
i PufXn [ Ci a:s:g

for all policies u [ Uf and j ¼ 1, 2. Thus, from Lemma 1, we have

c (u) � b(1)( g(1))

SEMI-MARKOV DECISION PROCESSES 653



for all policies u [ Uf. From Lemma 2, we have

n(u) � b(2)( g(2))

for all policies u. From Proposition 3 and the construction of f (1)* and f (2)*, we have

c ( f (1)� ) ¼
XI

i¼1

ci( f (1)
i )Pg(1)fXn [ Ci a:s:g

and

n( f (2)� ) ¼
XI

i¼1

ni( f (2)
i )Pg(2)fXn [ Ci a:s:g;

Combining the above equations with Theorems 1 and 2 gives the desired results. B

In order to construct the e-optimal (respectively optimal) stationary (respectively
pure) policy f * for the constained problem and for the expected variability criteria
(expected time-average variability criteria when h(2)(x, y) ¼ x 2 l(x 2 y)2, l . 0),
we can use the following procedure.

Step 1: Determine the strongly communicating classes Ci, i ¼ 1, . . . , I.
Step 2: For the constrained problem (respectively the expected time-average
variability criterion), solve Program LTi

(1) and obtain policies fi
(1) and

optimal values ti
(1) (respectively LTi

(2), fi
(2), and ti

(2)) for i ¼ 1, . . . , I.
Step 3: For the constrained problem (respectively the expected time-average
variability criterion) solve the intermediate SMDP and obtain g(1) and H (1)

(respectively g(2)and H (2)). Then combine it with fi
(1) ( fi

(2)) for i [ H (1)

(H (2)), to get the e-optimal (or optimal) policy f (1)* ( f (2)*).

7. CONCLUSIONS

In this article, we first considered the expected time-average reward c (u) subject to a
sample path constraint on the time-average cost. In general, there exists an e-optimal
stationary policy that can be obtained from the decomposition algorithm outlined in
Section 6. If the SMDP is unichain, then the policy is optimal for the constrained
problem. The optimal (e-optimal) policy can be found for unichain (respectively
communicating) SMDPs from the algorithm presented in Section 5.

Then we considered the expected time-average variability n(u). In general, there
exists an e-optimal stationary policy that can be obtained from the decomposition
algorithm outlined in Section 6. If h(x, y) ¼ x 2 l(x 2 y)2 with l . 0, then there
exists an optimal pure policy that can again be obtained from the decomposition
algorithm; moreover, in this case, each restricted SMDP can be solved with paramet-
eric LP. For general h(.,.) an optimal (e-optimal) policy can be found for unichain
(respectively communicating) SMDPs by solving the mathematical program LQ0

(2)

(respectively mathematical programs LQh
(2), h � 0).
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Multiple Constraints

Multiple sample-path constraints could be handled by the theory presented above and
in [32]; they were omitted in order to simplify the notation. Multiple sample-path
constraints could be introduced as

Pu lim sup
n!1

1
t

ðt

0
Cs ds � a(1)

k

� �
¼ 1

for all k ¼ 1, . . . , K. To incorporate these constraints, the programs T ( j)
i , Q ( j)

h , LT ( j)
i ,

and LQ( j)
h should be modified accordingly. One can see that all of the results in

Sections 3, 4, and 6 continue to hold. However, note that except in the unichain
case, for general SMDPs, the existence of a stationary policy is not implied by the
nonemptiness of Q(1)

0 when there is more than one constraint. Thus, Theorem 1
should be altered similar to [32], as below.

THEOREM 4: Suppose that SMDP is communicating. If there exists a policy u and
a n . d such that

Pu lim sup
t!1

1
t

ðt

0
Cs ds � a(1)

k � d

� �
¼ 1

for all k ¼ 1, . . . , K, then for any e . 0, there exists an e-optimal stationary policy
for the sample-path criterion.

Since the modified program LQ(1)
0 is an LP with jSj þ K linearly independent

constraints, one could see that the number of additional actions that an e-optimal
policy uses in communicating SMDP problems is equal to the number of constraints.
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