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Abstract

A steady-state M/M/c queueing system under batch service interruptions is introduced to model the traffic flow on a roadway link
subject to incidents. When a traffic incident happens, either all lanes or part of a lane is closed to the traffic. As such, we model these
interruptions either as complete service disruptions where none of the servers work or partial failures where servers work at a reduced
service rate. We analyze this system in steady-state and present a scheme to obtain the stationary number of vehicles on a link. For those
links with large c values, the closed-form solution of M/M/1 queues under batch service interruptions can be used as an approximation.
We present simulation results that show the validity of the queueing models in the computation of average travel times.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Increased traffic flow on roadways results in congestion. Congestion leads to delays, decreasing flow rate, higher fuel
consumption and thus has negative environmental effects. The cost of total delay in rural and urban areas is estimated
by the USDOT to be around $1 trillion per year [27]. Researchers from widely varying disciplines have been paying more
and more attention to modeling the vehicular travel in order to improve the efficiency of the current highway systems. The
arrival process in roadway traffic is modeled as singly arriving Poisson process [11,45], and as platoons to represent the
behavior of the vehicles moving between traffic signals [1,9,13,22]. Daganzo [9] presented a cell transmission model, rep-
resenting the traffic on a highway with a single entrance and exit, which can be used to predict the evolution of traffic over
time and space. Cheah and Smith [8] explored the generality and usefulness of state-dependent M/G/c/c queueing models
for modeling pedestrian traffic flows. Heidemann [16] used M/M/1 and M/G/1 queues to model the uninterrupted traffic
flow. In order to account for congestion, Jain and Smith [18] used M/G/c/c state-dependent queueing models for modeling
and analyzing vehicular traffic flow on a roadway segment which can accommodate a finite number of vehicles. Each vehi-
cle-space corresponds to a server, thus, the maximum number of vehicles that can be accommodated on the link provides
the number of servers, c, in the queueing model. Although there are several different types of vehicles utilizing the roadway,
in [18] they are all assumed to be identical and considered as a passenger car equivalent (see e.g. [2,46]). Here, the service
time gives the total travel time on the link. In this model, service rate (similarly the vehicular traveling speed) is assumed to
be a decreasing function of number of vehicles on the link to represent the congestion caused by traffic volume in practice
(details of the model can be found in [18]). Heidemann [17] studied transient behavior of M/M/1 queue to analyze the non-
stationary traffic flow. Vandaele et al. [47] used M/M/1, M/G/1 and GI/G/1 queues with or without state-dependent rates
to model traffic flow. Note that in single-server queueing models each link is considered as a point queue (or vertical queue,
see [10]). While in the multi-server case, a link is separated into cells, contrary to the cell transmission model, there is no
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interdependence between the service times. Van Woensel and Vandaele [48], and Van Woensel et al. [49] validate the use of
queueing models empirically and via simulation, respectively. They conclude that M/G/1 queueing models are best to
describe the normal traffic flow on a highway, while state-dependent GI/G/m queues were more realistic for the congested
traffic. All these models ignore the impact of incidents on the traffic flow.

However, the recurrent congestion generated by excess demand is only part of the problem. Congestion is also caused by
irregular occurrences, such as traffic accidents, vehicle disablements, and spilled loads and hazardous materials. An inci-
dent is defined here as any occurrence that affects capacity of the roadway [43]. Well over half of nonrecurring traffic delay
in urban areas and almost 100% in rural areas are attributed to incidents [27]. The likelihood of secondary incidents
increases with the amount of time it takes to clear the initial incident. USDOT estimates that the crashes that result from
other incidents make up 14–18% of all crashes [27]. Continuous monitoring of the impact of incidents, and effective inci-
dent management can decrease secondary crashes, improve roadway safety and decrease traffic delays.

It is widely accepted that the negative impact of incidents can be significantly reduced by the proper use of incident man-
agement procedures. Incident management is the combination of policies and strategies that provide services to reduce the
overall incident clearance duration, including incident detection [23,40]. A recent paper by Sheu [41] presents a vehicular-
platoon control methodology for automated highway systems in response to lane-blocking incidents.

To improve the efficiency of incident management, mathematical programming methods have been used [34]. Zografos
et al. [52] used a districting model to obtain optimal locations of emergency response units to minimize the average incident
response time. Daskin [12] constructed a mixed integer programming (MIP) model for simultaneously determining the
location, dispatching rule and routing of incident response units. Pal and Sinha [35] also used an MIP model to determine
optimal locations for response units that minimize annual cost. Sherali and Subramanian [39] consider the problem of opti-
mal dispatching of response units when future opportunity costs are also taken into account. However, all these models
have failed to consider the impact of incidents on the traffic pattern. For instance, the travel time of each link is generally
assumed to be constant even during an incident. On the other hand, traffic simulation software packages could be used to
analyze the impact of incidents. Many microscopic traffic simulation software packages are applicable to this purpose, for
example, ParamicsTM, INTEGRATIONTM and AIMSUNTM. Simulation models are also developed to evaluate the perfor-
mance of various incident management strategies [24,32,36]. Unfortunately, traffic simulation is very time-consuming,
due to the need for many replications to reduce the variance and obtain reliable results. The other shortcomings of this
approach are:

1. Lack of generality, flexibility and accuracy.
2. May need expensive software, trained personnel and expensive maintenance plans.

Therefore, it is computationally expensive to integrate the traffic simulation software into an incident management eval-
uation application. There may also be difficulties in integrating the traffic simulation software seamlessly into the whole
evaluation system.

In this paper, we analyze the vehicular traffic flow interrupted by incidents using queueing models. Consider vehicles
arriving as a Poisson process on a roadway link as shown in Fig. 1, which is subject to traffic incidents. The space occupied
by an individual vehicle on the road segment can be considered as one ‘‘server”, which starts service as soon as a vehicle
joins the link and carries the ‘‘service” (the act of traveling) until the end of the link is reached [18]. In [18], the number of
servers, c, is given as the multiplication of jam density (veh/mi-lane), length of the road link (miles), and number of lanes.
We assume service times are exponential and incidents occur randomly with exponential interarrival times. During an inci-
dent, the traffic deteriorates such that both the number of working servers and the service rate of all servers decrease. In this
state, no new interruptions can arrive. Thus, we are not modeling secondary accidents and instead we focus on primary
accidents. As soon as the incident is reported, the incident management system sends a traffic restoration unit to clear
the site. The number of working servers and service rates of all servers are restored to their normal level once the incident
is cleared that is assumed to take exponential amount of time. Hence, the incident process is modeled as a two-state Mar-
kov process representing the normal and incident conditions of the roadway. It is worth to note that the negative impact of
incidents involves the reduction of both speed and road capacity. In this study, a lower service rate, l0 P 0, affecting every
17.5 ft
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Fig. 1. A two-lane roadway link.
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server will be used to represent the impact of congestion caused by incidents. The concepts in this paper also cover, for
c = 1, the M/M/1 queueing model considered in [16,17,47], when incidents happen disrupting the traffic flow.

We would like to emphasize that the Poisson assumption for vehicle arrivals [48,49], and exponential interarrival times
for the incidents [42], are shown to be reasonable. Although the exponential service times may seem unrealistic, we will see
later that in our setting, the total time to traverse a link is not going to be exponential. Thus, our model may be considered
as having a generally distributed service time.

In the next section, we present the M/M/c queueing model under system level service interruptions to describe the traffic
flow on a roadway link that is subject to incidents. Such queues are called M/MSP/c queue, to represent the Markovian
behavior of the Service Process (MSP). Two cases of service interruptions will be considered. One is the complete road
closure case, i.e., l0 = 0 and the other is the partial failure case, i.e., l0 > 0. Randomly occurring system breakdowns where
l0 = 0, have been considered by several researchers. White and Christe [50] studied a single-server queue with preemptive
resume discipline, and related such queues to queues with random server breakdowns. Gaver [15] and Keilson [20] also
studied a single-server queue with random breakdowns. Gaver [15] obtained the generating functions for the stationary
waiting time and the number in the system in an M/G/1 queue. Avi-Itzhak and Naor [3] derived the expected queue length
for M/G/1 queue with server breakdowns. Mitrany and Avi-Itzhak [26] analyzed M/M/c queue where each server may be
down independently of the others for an exponential amount of time. They obtained an explicit form of the moment gen-
erating function of the queue size for one-server and two-server systems, and gave a computational procedure for cases
with more than two-servers. Jayawardene and Kella [19] studied an M/G/1 queue with alternating renewal breakdowns,
and they show that the decomposition property holds: the stationary number of customers in the system can be interpreted
as the sum of the state of the corresponding system with no interruptions and another nonnegative discrete random
variable.

Considering also the partial failure case, Eisen and Tainier [14], Yechiali and Naor [51], and Purdue [37] analyzed the M/
M/1 system with two-state Markov modulated service and arrival processes via generating functions. Neuts [29] studied
such systems in the context of queues in random environment using matrix–geometric computational methods. Neuts
[29,30] also introduced briefly the M/M/c queue in random environment. O’Cinneide and Purdue [31] considered the
M/MSP/1 queue via matrix–algebraic methods and demonstrated with examples the impossibility of ‘‘matrix–Poisson”

stationary distribution. Keilson and Servi [21] studied the same system and obtained the generating function of the station-
ary number of customers in the system in terms of Kummer functions [44]. Recently, Baykal-Gürsoy and Xiao [5] consid-
ered the M/MSP/1 system with two-state Markov modulated service process. They showed that this model exhibits the
stochastic decomposition property, and gave the explicit form of the stationary distribution.

In fact, there has been a recent interest in these types of queues where the service rate changes randomly (see [6,7,25]).
These papers only consider the single-server queue where the asymptotic analysis is performed. In [6,7], the failure times are
assumed to be generally distributed. The motivation for these queues can be found in the integrated services communica-
tion networks; when web servers serve multi-class customers the secondary customers’ service time goes through partial
service interruptions since when a high priority customer arrives it receives part of the bandwidth, thus reducing the service
speed.

In Section 3, solutions to special cases are presented. In Section 4, we discuss how to approximate the M/MSP/c model
when c is large and other computational issues. This paper concludes with a summary of results and recommendations for
future research.

2. Notation and mathematical model

Consider a road link as shown in Fig. 1 with c servers that are subject to random interruptions of exponentially distrib-
uted durations. Note that in the literature the incident duration is assumed to be normally or log-normally distributed.
Here, we assume it is exponentially distributed to provide us with an analytically tractable yet suitable approximation.
Later on other models with more general incident durations can be built upon this model. We assume that there is an infi-
nite-capacity buffer space available at the end of the link so that the vehicles that cannot get a server can wait for service.
Service times are assumed to be independent and identically distributed exponentials with rate l. During interruptions, the
number of functioning servers decreases from c to c0 and the service rates of all servers drop from l to l0 P 0. As soon as
the interruption is cleared, the number of working servers and their service rates are restored to c and l, respectively. We
assume that interruptions arrive according to a Poisson process with rate f, and the clearance times are i.i.d. exponentials
with rate r. The vehicle arrivals are in accordance with a homogeneous Poisson process with intensity k. Note that we are
not considering the traffic during peak hours, where the arrival of the vehicles is uniformly distributed. The interruption
and vehicle arrival processes, and the service and clearance times are all assumed to be mutually independent.

The stochastic process {X(t),Y(t)} describes the state of the link at time t, where X(t) is the number of vehicles on the
link at t, and Y(t) is the status of the link. If at time t, the link is experiencing an interruption, then Y(t) is equal to F (fail-

ure); otherwise, Y(t) is N (normal). The link is said to be in state (i,F), if there are i vehicles on the link which is experiencing
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an interruption, while the link is said to be in state (i,N), if there are i vehicles on the link which is functioning normally.
Accordingly, we denote the steady-state probability of the link being in state (i,F) by Pi,F, and the steady-state probability
of the link being in state (i,N) by Pi,N.

The steady-state balance equations are given in (1)–(4).
0 < i < c0:
ðkþ il0 þ rÞP i;F ¼ ðiþ 1Þl0P iþ1;F þ kP i�1;F þ fP i;N ;

ðkþ ilþ f ÞP i;N ¼ ðiþ 1ÞlP iþ1;N þ kP i�1;N þ rP i;F ;
ð1Þ
c0 6 i < c:
ðkþ c0l0 þ rÞP i;F ¼ c0l0P iþ1;F þ kP i�1;F þ fP i;N ;

ðkþ ilþ f ÞP i;N ¼ ðiþ 1ÞlP iþ1;N þ kP i�1;N þ rP i;F ;
ð2Þ
c 6 i:
ðkþ c0l0 þ rÞP i;F ¼ c0l0P iþ1;F þ kP i�1;F þ fP i;N ;

ðkþ clþ f ÞP i;N ¼ clP iþ1;N þ kP i�1;N þ rP i;F ;
ð3Þ
i = 0:
ðkþ rÞP 0;F ¼ l0P 1;F þ fP 0;N ;

ðkþ f ÞP 0;N ¼ lP 1;N þ rP 0;F :
ð4Þ
Let GN ðzÞ ¼
P1

i¼0ziP i;N and GF ðzÞ ¼
P1

i¼0ziP i;F , for jzj 6 1. Then the generating function of the steady-state number of
vehicles on the link is given by
GðzÞ ¼ GF ðzÞ þ GN ðzÞ: ð5Þ
By definition, Gð1Þ ¼
P1

i¼0P i;N þ
P1

i¼0P i;F ¼ 1. Multiplying both sides of (1)–(4) by zi and summing over all i yield
kð1� zÞ þ r þ c0l0 1� 1

z

� �� �
GF ðzÞ � fGNðzÞ ¼

Xc0�1

i¼0

1� 1

z

� �
ðc0 � iÞl0ziP i;F

� �
ð6Þ
and
kð1� zÞ þ f þ cl 1� 1

z

� �� �
GN ðzÞ � rGF ðzÞ ¼

Xc�1

i¼0

1� 1

z

� �
ðc� iÞlziP i;N

� �
: ð7Þ
There are (c + c0) unknown probabilities in (6) and (7), which could be reduced to two unknowns by using the relations
expressed in (1), (2) and (4). Without loss of generality, we assume the remaining unknown probabilities are P0,N and
P0,F.

Let
gðzÞ ¼
GN ðzÞ
GF ðzÞ

� �
;

AðzÞ ¼
kð1� zÞ þ f þ cl 1� 1

z

� �
�r

�f kð1� zÞ þ r þ c0l0 1� 1
z

� �
" #

;

bN ðzÞ ¼
Xc�1

i¼0

1� 1

z

� �
ðc� iÞlziP i;N

� �
;

bF ðzÞ ¼
Xc0�1

i¼0

1� 1

z

� �
ðc0 � iÞl0ziP i;F

� �
and
bðzÞ ¼
bN ðzÞ
bF ðzÞ

� �
;

then, (6) and (7) can be rewritten into matrix form, as
AðzÞgðzÞ ¼ bðzÞ: ð8Þ
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So that g(z) can be obtained by inverting the A(z) matrix. Further manipulations give G(z) as
GðzÞ ¼ ½kzð1� zÞ þ c0l0ðz� 1Þ þ ðr þ f Þz�
Pc�1

i¼0 ðc� iÞlziP i;N þ ½kzð1� zÞ þ clðz� 1Þ þ ðr þ f Þz�
Pc0�1

i¼0 ðc0 � iÞl0ziP i;F

k2z3 � ðk2 þ cklþ kf þ c0kl0 þ krÞz2 þ ðcklþ c0kl0 þ cc0ll0 þ c0f l0 þ clrÞz� cc0ll0
:

ð9Þ

Using the fact G(1) = 1, and Eqs. (6) and (7), we have
Xc0�1

i¼0

ðc0 � iÞl0P i;F þ
Xc�1

i¼0

ðc� iÞlP i;N ¼
f ðc0l0 � kÞ þ rðcl� kÞ

r þ f
: ð10Þ
We can immediately see the following stability condition for general multi-server queues.
Stability conditions: (a) The general multi-server queue with exponential service times and batch partial failures is stable if
k <
r

r þ f
clþ f

r þ f
c0l0:
(b) An M/M/c queue with batch system breakdowns is stable if k
cl <

r
rþf .

Besides Eq. (10), we need another equation to solve Eq. (9), which can be deduced from the properties of analytic func-
tions [38].

Let d(z) denote the denominator of G(z).

Remark 1. d(z) has only one root inside the unit circle. In fact, similar to [3] one can show that d(z) has one real root in
(0,1), and the other two roots are larger than 1 and also are real. Notice that for any real number z that satisfies jzj 6 1,
generating function, G(z) is analytic. Therefore, if z0 is the root of d(z), which satisfies 0 < z0 < 1, z0 should also be a root of
the numerator of G(z)
Gðz0Þ ¼
nðz0Þ
dðz0Þ

; ð11Þ
where n(z0) is the numerator of G(z) evaluated at z0. Thus, we must have
nðz0Þ ¼ 0: ð12Þ

Combining Eq. (10) and (12) yields the value of P0,N and P0,F. With known P0,N and P0,F, generating function can be finally
obtained by solving (8). Subsequently, the expected number of vehicles on the link is given by evaluating G0(z)jz = 1.

As an illustrative example, we consider an M/M/5 queue subject to interruptions that reduce the service rate to a third of
its normal value. The expected number of vehicles on the link versus the service rate l is plotted in Fig. 2. In this figure,
k = 0.6, l = 3l0, and f and r take some particular values. It can be seen from Fig. 2 that the number of vehicles on the link
decreases as service rate increases. If service rate does not change, higher incident frequency or slower clearance rate would
lead to more vehicles on the link. Clearly, the stationary number of vehicles on the link when no incident occurs, will con-
stitute the lower bound.

In the following sections we consider:

1. Special cases: c = 1, single-server system and c = 2, two-server system.
2. c ?1. For c large enough, we can use M/MSP/1 queue as an approximation.
3. Validation of the model via simulation-based models.
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Fig. 2. Expected number of vehicles in an M/M/5 queue subject to service interruptions.
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3. Special cases

Since M/M/1 queue in random environment had been studied extensively, we will only briefly discuss these queues with
complete breakdown, i.e., l0 = 0, before we consider the M/MSP/2 queue. The generating function is obtained from Eq. (9)
as
GðzÞ ¼ ðrl� ðr þ f ÞkÞð�kzþ kþ r þ f Þ
ðr þ f Þðk2z2 � kðkþ r þ f þ lÞzþ lðkþ rÞÞ

¼
r

rþf ð1� q rþf
r Þð1� kz=dÞ

ð1� qzÞð1� k=dzÞ � f
d

� 	 ; ð13Þ
where q ¼ k
cl, with c = 1 and d = k + r + f.

This result matches with the result of Mitrany and Avi-Ithzak [26], who considered an M/M/c queue where each server
can breakdown independently of the others. When c = 1, the proposed system becomes equivalent to their model. The
result also agrees with the general formula derived for the preemptive resume M/G/1 queue [15]. We see that this system
does not have the stochastic decomposition property.

The expected number of vehicles on the link can be obtained immediately as (cf. [26]):
E½X � ¼ k½ðr þ f Þ2 þ lf �
ðr þ f Þðrðl� kÞ � kf Þ : ð14Þ
Using Little’s formula we obtain the average travel time on the link as
W ¼ ½ðr þ f Þ2 þ lf �
ðr þ f Þðrðl� kÞ � kf Þ : ð15Þ
3.1. M/M/2 system subject to interruptions l0 > 0

Consider the two-server system subject to service interruptions. The generating function of this system is given by Eq. (9)
as
GðzÞ ¼ ½kzð1� zÞ � 2l0ð1� zÞ þ ðr þ f Þz�ð2lP 0;N þ lzP 1;N Þ þ ½kzð1� zÞ � 2lð1� zÞ þ ðr þ f Þz�ð2l0P 0;F þ l0zP 1;F Þ
k2z3 � ðk2 þ 2klþ kf þ 2kl0 þ krÞz2 þ 2ðklþ kl0 þ 2ll0 þ f l0 þ lrÞz� 4ll0

:

ð16Þ
Using the boundary equation (4) we can rewrite (16) as follows:
GðzÞ ¼ ½kzð1� zÞ þ ðrþ f Þz�½ð2lþ kzÞP 0;N þ ð2l0 þ kzÞP 0;F � � 2ð1� zÞ½ðl0ð2lþ kzÞ þ ðl0 � lÞfzÞP 0;N þ ðlð2l0 þ kzÞ � ðl0 � lÞrzÞP 0;F �
k2z3 � ðk2þ 2klþ kf þ 2kl0 þ krÞz2 þ 2ðklþ kl0 þ 2ll0 þ f l0 þ lrÞz� 4ll0
G(1) = 1, or similarly Eq. (10) yields
ð2lþ kÞP 0;N þ ð2l0 þ kÞP 0;F ¼
rð2l� kÞ þ f ð2l0 � kÞ

r þ f
: ð17Þ
Moreover, the expected number of vehicles on the link is computed as
EðX Þ ¼ dGðzÞ
dz

� �
z¼1

:

In Fig. 3a and b, we plot the expected number of vehicles on the link versus the service rate l with in the range (1–3) and (0–
1), respectively. We let l = 2l0,k = 1, and f and r take some particular values. These figures show that the number of vehi-
cles on the link decreases as service rate increases, but the effect is more significant when l is smaller than 1. Clearly, this is
due to the stability condition. Note that, the stability condition requires that l > ðfþrÞk

ðfþ2rÞ ¼
fþr

fþ2r.
Fig. 4 shows the effect of increasing l0 on the number of vehicles on the link, while keeping l fixed at 2. Similar to Fig. 3,

we let k = 1, and f and r take some particular values. It can be seen that the expected number of vehicles also decreases as l0

increases.
3.2. M/M/2 system subject to interruptions with l0 = 0

When l0 = 0, we can also obtain the closed-form solution for M/M/2 queues that are subject to interruptions. Letting
l0 = 0 in Eqs. (6) and (7) yields:



Fig. 3. Expected number of vehicles in an M/MSP/2 queue (k = 1.0, l = 2l0).
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ðkð1� zÞ þ rÞGF ðzÞ � fGNðzÞ ¼ 0;

ðkð1� zÞ þ 2lð1� 1=zÞ þ f ÞGN ðzÞ � rGF ðzÞ ¼ 2lð1� 1=zÞP 0;N þ lzð1� 1=zÞP 1;N :




Since G(z) = GF(z) + GN(z) and G(1) = 1, we have
2P 0;N þ P 1;N ¼
2r

r þ f
� k

l
¼ 2

r
r þ f

� k
2l

� �
:

With l0 = 0, the boundary condition, (k + r)P0,F = fP0,N and (k + f)P0,N = lP1,N + rP0,F imply
P 1;N ¼
1

l
kþ f � rf

kþ r

� �
P 0;N ¼

k
l

kþ r þ f
kþ r

� �
P 0;N :
Balance equations together with the previous equality, yields
P 0;N ¼
ð r

rþf � k
2lÞ

1þ k
2l

kþrþf
kþr

� � ; ð18Þ
giving the stability condition, as k
2l <

r
rþf . The generating function is also obtained as
GðzÞ ¼
r

rþf 1� q rþf
r

� �
ð1� kz=dÞ

ð1� qzÞð1� k=dzÞ � f
d

1þ zg
1þ g

; ð19Þ
where q ¼ k
2l, g ¼ k

2l
fþkþr

kþr

� �
. Clearly, similar to M/MSP/1, the M/MSP/2 system does not exhibit the stochastic decompo-

sition property.



Fig. 4. Expected number of vehicles in an M/MSP/2 queue (k = 1.0, l = 2.0).
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The expected number of vehicles on the link is
EðX Þ ¼ 2kl½2ðkþ rÞðf 2 þ r2 þ 2lf Þ þ f ð2r þ kÞ2�
ðf þ rÞð2rl� f k� rkÞðf kþ ðr þ kÞðkþ 2lÞÞ ð20Þ
and using Little’s formula we obtain the average travel time on the link as
W ¼ 2l½2ðkþ rÞðf 2 þ r2 þ 2lf Þ þ f ð2r þ kÞ2�
ðf þ rÞð2rl� f k� rkÞðf kþ ðr þ kÞðkþ 2lÞÞ : ð21Þ
4. Computational issues

4.1. Approximating M/M/c queue with service interruptions

Generally, a roadway link can accommodate hundreds of vehicles. As we have mentioned in the previous section, when c

is large, it is not easy to obtain explicit expressions for the generating function. The computational complexity of M/MSP/c
queues for large c values motivates us to seek simpler solutions. A straightforward approach is to use M/MSP/1 to
approximate M/MSP/c if c is large enough.

In our previous work [5], we show that an M/MSP/1 queueing system exhibits the stochastic decomposition property,
namely, the stationary number of vehicles present on the link at a random point in time can be represented as the sum of
two independent random variables. One of these is the stationary number of customers present in an ordinary M/M/1
queue without interruptions. For completeness, we present our result briefly as follows.

If we let a ¼ f
l ; b ¼

f
l þ r

l0

� �
, q� ¼ 1

2
k
l� k

l0

� �
and p ¼ rlþf l0

rlþf l , then the generating function of the stationary number of cus-

tomers in an M/MSP/1 queue can be computed as
GðzÞ ¼ e
k
lðz�1Þ pMða; b;�2q�ðz� 1ÞÞ þ ð1� pÞMðaþ 1; bþ 1;�2q�ðz� 1ÞÞð Þ;
where M(a,b,w) is the Kummer’s function [44]. It can be shown that Kummer functions are the generating functions of
Poisson random variables randomized by truncated beta. The expected number of customers in the system is computed, as
EðX Þ ¼ k
l
þ kf ðl� l0Þ

l2ðr þ f Þ 1þ ðf þ lÞðl� l0Þ
ðrlþ f l0 þ ll0Þ

� �
: ð22Þ
In Fig. 5, we plot the expected number of vehicles on the link versus the service rate l. We let k = 6, l = 10l0, and f and r

take some particular values.
To verify this approximation, we compute the expected number of vehicles in an M/MSP/200 queue and compare it with

the result of M/MSP/1 queue. Both queues have the same incident arrival rate, incident clearance rate and vehicle arrival
rate, which are 0.002, 0.075 and 6, respectively. In both queues, we assume the service rate during an interruption is 1/10 of
the normal service rate. We use balance equations (1)–(4) up to a high enough capacity to obtain the steady-state



Fig. 5. Expected number of vehicles in an M/MSP/1 queue with k = 6 and l = 10l0.
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distribution, so that the blocking probability is negligible (in the order of 10�6). Table 1 gives almost identical results for
these queues with service rate varying from 0.3 to 2.7.

To see the effect of loading the system, the arrival rate, k is increased from 6 to 51. Table 2 summarizes the computa-
tional results for M/MSP/200 and M/MSP/1 queues. Here the blocking probability is negligible at a level less than 0.009.
Relative errors defined below are also listed:
Table
The ex

l

M/MS
M/MS

k = 6 a

Table
The ex

k

M/MS
M/MS
Relativ

l = 0.3
erelative ¼
jEðX ÞM=M=c � EðX ÞM=M=1j

EðX ÞM=M=c

� 100%:
Note that all the relative errors are less than 9%, which means using M/MSP/1 is a promising approximation for M/MSP/
c with large c value even for a highly loaded system.
4.2. Validation of M/MSP/c and M/MSP/1 models

Consider a roadway link depicted in Fig. 1. We can use our models to investigate the impact of the incidents on the
average travel time. The average travel time can be obtained from the Little’s theorem as given as the first equality below.
The second equality is only valid for the M/MSP/1 queue
W ¼ EðX Þ=k ¼ 1

l
þ f ðl� l0Þ

l2ðr þ f Þ 1þ ðf þ lÞðl� l0Þ
ðrlþ f l0 þ ll0Þ

� �
: ð23Þ
In order to verify our model, we compare our analytical solutions with the results of INTEGRATIONTM (version 1.5 � 3),
a widely used microscopic traffic simulation software package. To this end, we need to transform the parameters in Eq. (23)
into inputs for INTEGRATIONTM as follows:
1
pected number of vehicles in M/MSP/200 and M/MSP/1

0.3 0.6 0.9 1.5 2.7

P/200 21.675 11.171 7.588 4.655 2.640
P/1 21.675 11.171 7.5884 4.6548 2.6401

nd l = 10l0, f = 0.002, r = 0.075.

2
pected number of vehicles in M/MSP/200 and M/MSP/1

6 12 24 51

P/200 21.68 43.59 89.18 202.75
P/1 21.68 43.35 86.70 184.24
e error 0% 0.5% 2.7% 8%

and l0 = 0.03, f = 0.002, r = 0.075.
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1. Length of this link, L: According to the ITE (1994), average length of the occupancy of a vehicle is 17.5 feet, thus, the
length of a 2-lane link which can accommodate c vehicles is computed as (c � 17.5/2) = 8.75c feet = 0.002667c km.

2. Traffic demand: Number of vehicles arriving at the link per hour in terms of k (veh/seconds) = 3600k (veh/hour).
3. Frequency of incidents, f (incident/seconds): We use f as the rate to generate incidents in the simulation.
4. Incident duration: d = 1/r seconds.
5. Travel speed at full capacity: v = L � l � 3600 km/hour.
6. Travel speed during incidents: v0 = L � l0 � 3600 km/hour.
7. Given the number of lanes on a link, n, the number of lanes blocked by the incident is, b = n � (1 � l0/l).

We use INTEGRATIONTM to simulate a link with travel speed at full capacity v = 57.5 km/hour (65 miles/hour). Note
that INTEGRATIONTM treats the arrival process as fluid, thus generating k vehicles per hour deterministically. We con-
sider various arrival rates and link lengths on a two-lane roadway where minor incidents happen. Minor incidents take less
than 30 minutes to be cleared [28] with the average of 7 minutes [42]. Skabardonis et al. report 0.5 incidents per hour for a
1 km roadway [42]. The values for f and r are chosen accordingly. For each setting, we run the simulation to obtain average
travel times for 100 replications and each replication simulates a 12,000-second period. Under congestion, each replication
takes 5 minutes, thus each scenario takes more than 4 hours. This is very time-consuming compared to the analytical
model. Tables 3 and 4 summarize the simulation and analytical results. The last column shows the relative errors. We
would like to emphasize that in the simulation model as in real life, the service times are also neither independent nor expo-
nential. The incident process is the only random process in the simulations. Still, the restrictive analytical model performs
reasonably for obtaining ‘‘average” performance measures giving relative errors within 13% range.

Table 3 is used to demonstrate the effect of decreasing c by decreasing L. Note that decreasing the length of the link in
simulation leads to the increase in the service rate in the analytical approach, since the full-capacity traveling speed remains
constant. The results show that the relative error for both M/MSP/c and M/MSP/1 are higher for shorter links. If the link
is long enough, the relative error can be kept within the range of 2%. This is reasonable enough for most applications.

Table 4 is used to demonstrate the effect of congestion on the approximation. As congestion increases due to increasing
arrival rate, relative errors increase. But, clearly, as congestion increases M/MSP/c becomes a better model for the inter-
rupted traffic than the infinite server system. We should note that the traffic intensity changes as the arrival rate increases
Table 3
Comparison of simulation and analytical results (decreasing c)

c (veh) k (veh/seconds) l (veh/seconds) l0 ¼ 1
14 � l (veh/seconds) f (1/seconds) r (1/seconds) Model Average travel

time (seconds)
Relative
error (%)

400 0.3 0.015 0.001071 0.0002 0.005 M/M/c 74.5696 0.48
M/M/1 74.5696 0.48
Simulation 74.93

200 0.3 0.03 0.002143 0.0002 0.005 M/M/c 39.1883 1.88
M/M/1 39.1883 1.88
Simulation 39.94

100 0.3 0.06 0.004286 0.0002 0.005 M/M/c 20.8397 10.87
M/M/1 20.8397 10.87
Simulation 23.38

50 0.3 0.12 0.008571 0.0002 0.005 M/M/c 11.0764 12.85
M/M/1 11.0761 12.86
Simulation 12.71

Table 4
Comparison of simulation and analytical results (increasing k)

c (veh) k (veh/seconds) l (veh/seconds) l0 ¼ 1
14 � l (veh/seconds) f (1/seconds) r (1/seconds) Model Average travel

time (seconds)
Relative
error (%)

200 0.3 0.03 0.002143 0.0002 0.005 M/M/c 39.1883 1.88
M/M/1 39.1883 1.88
Simulation 39.94

200 0.5 0.03 0.002143 0.0002 0.005 M/M/c 39.2001 10.89
M/M/1 39.1883 10.92
Simulation 43.99

200 0.7 0.03 0.002143 0.0002 0.005 M/M/c 39.3555 11.89
M/M/1 39.1883 12.27
Simulation 44.67
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from 0.05 to 0.12 during the regular traffic, and from 18.19 to 42.46 during the incidents in Table 4. But, the steady-state
traffic intensity is still low, between 0.051 and 0.121.

5. Conclusion and future research

In this paper, we propose queueing models to describe the traffic flow on a road link that is subject to roadway incidents,
and we explore their solution schemes. For some special cases, we present closed-form solutions. We also investigate the
use of M/MSP/1 system to approximate an M/MSP/c system when c is large. The comparison of the analytical results
with the simulation results via INTEGRATIONTM, a traffic simulation package, shows that M/MSP/1 provides a good
enough approximation for long links while M/MSP/c might be more appropriate for the congested roadways. This supplies
an alternative approach to obtain the average link travel time under the impact of incidents. The amount of time required
to run the INTEGRATIONTM simulation software increases linearly with the number of replications, while the computa-
tion time of our model is fixed. The advantages of the proposed models over the simulation approach are significant when
multiple simulation runs are required to reduce the variance in simulation results.

Empirical validation of our model is currently not possible because real-time queuing and delay data due to accidents
are not readily available. Since accidents are random events, it is almost impossible to predict their location and time for
real-time data collection. Traffic detectors that are, in general, sparsely deployed do not capture the type of delay and
queueing information needed to validate our model. However, there are some emerging technologies such as the use of
instrumented probe vehicles or cell phones continuously roaming in the network that can be used for our purposes when
they become more widely available for real-time data collection. In fact, one of the co-authors of this paper is actively
involved in the collection of such real-time data [4,33]. In the next phase of our research, we will try to collect data using
one or more of these emerging data collection technologies.

Even though the proposed queueing models are appropriate for obtaining the average performance measures, in the
future, we plan to validate these analytical models in terms of their variance characteristics.
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