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Abstract—Secret and reliable communication presents a
challenge involving a double dilemma for a user and an adversary.
One challenge for the adversary is to decide between jamming and
eavesdropping. While jamming can be quite effective in preventing
reliable communication of the user, it can also be quite harm-
ful for the adversary since he/she can be detected. On the other
hand, eavesdropping is quite safe for the adversary; however, it
sometimes may not be so efficient compared to jamming, if the
adversary cannot respond to the information gleaned from eaves-
dropping in a timely manner. The user can either transmit, thus
becoming vulnerable to malicious activity, or be in a silent mode in
turn delaying his/her transmission. However, by combining these
modes properly the user can assist an intruder detection system in
detecting the adversary, since transmission can provoke the adver-
sary into a jamming attack, and a strategically allocated silent
mode while the jammer continues jamming can increase the prob-
ability of detecting the adversary. In this paper, to get insight into
this problem, two simple stochastic games are proposed. Explicit
solutions are found that lead to the characterization of some inter-
esting properties. In particular, it is shown that under certain
conditions, incorporating in the transmission protocol a time slot
dealing just with the detection of malicious threats can improve
the secrecy and reliability of the communication without extra
transmission delay.

Index Terms—Jamming, eavesdropping, secret communication,
stochastic games, stationary strategies.

I. INTRODUCTION

T HE problem of establishing secret and reliable wireless
communication between a transmitter and a receiver is a

challenge involving several different aspects. On the one hand,
due to the broadcast nature of wireless communication it is dif-
ficult to shield transmitted signals from unintended recipients.
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On the other hand, due to possible interference from other
transmitters the reliability of signals at the receiver may suffer.
An adversarial user may exploit these weaknesses to its benefit
and behave either as a passive eavesdropper who tries to listen
in on an ongoing transmission without being detected (see, for
example, models of an interference channel with an external
eavesdropper [1], and of secure communications over fading
channels [2] and over a fading eavesdropper channel [3]), or as
a malicious user (jammer) who tries to degrade the signal qual-
ity at the intended receiver (see, for example, works on jamming
principles and techniques [4], on detecting jamming attacks [5],
on employing artificial noise to improve secret communica-
tion [6], on defense against jamming attacks [7], on jamming
in multi-channel cognitive radio networks [8], and on jam-
ming of dynamic traffic [9]). In [10] and [11], a new approach
to dealing with this problem was suggested, namely, to con-
sider a more sophisticated adversary with the dual capability of
either eavesdropping passively or jamming any ongoing trans-
mission, also referred to as an active eavesdropper. In particular,
this problem was investigated as a zero-sum game between
the user and the sophisticated adversary. That approach was
further developed in [12] for the case of many adversaries
and the users communicating with others located outside of a
secure zone. The users can choose channels on which to com-
municate, while the adversaries can choose channels to jam
or to eavesdrop upon, but they cannot tune the powers they
employ. The problem was extended to the case in which the
adversary, besides choosing a channel to attack, can tune the
jamming power while the user adjusts its transmission power
in OFDM (Orthogonal Frequency-Division Multiplexing) (for
the low signal-to-interference-plus-noise ratio regime) [13] or
CDMA (Code Division Multiple Access) networks [14]. The
question of how an adversary’s restricted and unknown eaves-
dropping capability affects the secret communication between
a set of users has been investigated in [15] .

In this paper, we propose a new paradigm for the problem
of an adversary’s dual threat: jamming and eavesdropping. In
particular, we consider the potential of incorporating in the
transmission protocol a time slot dealing with the detection
of a malicious threat to increase secrecy and reliability of the
communication. This paradigm arises as a result of a dilemma
the users face in meeting the dual jamming and eavesdropping
threat. The user can either transmit and suffer from malicious
activity or be in a silent mode (not transmit) and suffer from a
delay in transmission. However, by properly combining these
modes the user can help the IDS (Intrusion Detection System)
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Fig. 1. Relationships between Alice, Bob and Eve in a basic stochastic game.

to detect the adversary, since transmission can provoke the
adversary into a jamming attack, and strategically switching to
the silent mode while the jammer continues the jamming attack
can increase the probability of detecting the adversary.

To get insight into this problem, we propose two simple
stochastic games played between a user and an adversary. The
first one extends the static scenario of [10] and [11] to the
dynamic case, while the second one includes the consideration
of silent modes. We give the equilibrium strategies for the play-
ers, and values of both games in closed form. We demonstrate
that use of a silent mode can be helpful in increasing secrecy
and reliability of the communication. The equilibrium strate-
gies are randomized, and thus, the user’s strategy specifies a
frequency of using the silent mode in the transmission protocol.

Here employing stochastic game tools is quite natural, since
the user and the adversary have opposing motivations, and it
is uncertain how long the adversary can manage to perform its
malicious activity before it is detected. Note that game theory
gives a very convenient tool to deal with various problems in
network security. In [16], one can find a structured and com-
prehensive survey of research contributions that analyze and
solve security and privacy problems in computer and wire-
less networks via game-theoretic approaches. Here as examples
of game-theoretic approaches, we mention just a few of such
works: modeling malicious users in collaborative networks
[17], information warfare [18], attack-type uncertainty in a net-
work [19], and packet transmission under jamming [20], [21].
Applications of stochastic games in modeling network security
can be found in [22]–[25].

The organization of this paper is as follows: in Section II, we
first introduce the model for the dual threat problem (eavesdrop-
ping and jamming). In Section III, we formulate and solve the
basic stochastic game between the adversary and the user when
the user employs only two transmission modes. In Section IV,
we extend the basic model and solve it for the case in which
the user can employ an extra mode, namely, a silent mode, in
which s/he tries to trap the adversary. In Section V, numerical
illustrations are presented. Finally, in Section VI, a discussion
of the results is offered.

II. BACKGROUND SETUP OF THE PROBLEM

Our motivating scenario involves a user Alice, who wishes to
communicate secretly and reliably with Bob. Eve, an adversary,
wants to obstruct this secret communication between Alice and
Bob by means of either eavesdropping or jamming (Figure 1).

Under an eavesdropping attack, the maximum achievable
rate for transmission (see, [12]) from Alice to Bob is given

by the secrecy capacity uSC (P) = max{u(P, 0) − uE (P), 0},
where u(P, J) is the capacity of direct transmission between
Alice and Bob if Alice transmits the signal P and Eve applies
the jamming signal J , and uE = uE (P) is the capacity of Eve
as a receiver in the eavesdropper mode.

If Eve works in eavesdropping mode (so, J = 0), it is opti-
mal for Alice to transmit a signal P E maximizing her secrecy
capacity, i.e.

P E = argmax
P

uSC (P).

If Eve employs the jamming mode, it is optimal for Alice
to transmit a signal P J that is the best response to the worst
transmission condition, i.e.

P J = argmax
P

min
J

u(P, J).

Then, the best response P J to the worst condition

J J = argmin
J

max
P

u(P, J)

yields an equilibrium (saddle point) in such a way that for any
(P, J) the following inequalities hold:

u
(

P, J J
)

≤ u := u
(

P J , J J
)

≤ u
(

P J , J
)

,

where u is called the value of the game, which is the payoff to
Alice at the equilibrium/saddle point.

In this paper, as a basic example we consider a wireless
medium with n separate channels (e.g. different subcarriers in
an OFDM system), which we model as additive white Gaussian
noise (AWGN) channels. Thus, Alice communicates to Bob
across n (sub)channels, and the channel responses for these
n channels are represented by coefficients hi , i ∈ [1, n]. The
channels from Eve to Alice have corresponding coefficients
hEi , where hEi ≤ hi , while the coefficients for the channels
from Eve to Bob are represented by gi . Hence, hEi is associ-
ated with eavesdropping, while gi is associated with jamming.
Also, P = (P1, . . . , Pn) is a strategy of Alice, where Pi is a sig-
nal transmitted by Alice through channel i ,

∑n
i=1 Pi = P̄, and

P̄ is the total transmitted signal. J = (J1, . . . , Jn) is a strat-
egy of Eve, where Ji is a jamming signal employed by Eve to
jam channel i ,

∑n
i=1 Ji = J̄ , and J̄ is the total jamming signal.

Then,

u(P, J) =
n∑

i=1

ln

(
1 + hi Pi

σ 2 + gi Ji

)
,

uE (P) =
n∑

i=1

ln

(
1 + hEi Pi

σ 2
E

)
,

uSC (P) =
n∑

i=1

(
ln

(
1 + hi Pi

σ 2

)
− ln

(
1 + hEi Pi

σ 2
E

))
,

where σ 2 and σ 2
E are the variances of background noises of the

main and eavesdropping channels, respectively. An algorithm
suggested in [26] can be employed to find the optimal strat-
egy P E of Alice in eavesdropping mode, while the equilibrium
strategies P J and J J can be calculated by using the results in
[27] for moderate SNR (Signal to Noise Ratio) and in [28] and
[29] for low SNR regimes.



GARNAEV et al.: GAME THEORETIC ANALYSIS OF SECRET AND RELIABLE COMMUNICATION 2157

III. BASIC GAME

In this section, we consider Eve as an active agent, who can
choose a mode in which to work. Besides the payoffs there is
another important difference between jamming and eavesdrop-
ping modes, namely, in jamming mode Eve can be detected
and her malicious activity can be stopped by eliminating her
from the game. We assume that there is a probability 1 − γ

of detecting Eve in jamming mode by an IDS. Note that there
is quite an extended literature on detecting an intruder’s sig-
nal or its source (see, for example, books [30]–[32], and papers
on the energy detection of the unknown signals [33], [34] and
on game-theoretic models of the optimal scanning bandwidth
problem [35], [36]). Thus, γ is the probability of not detecting
the adversary.

We assume that all the actions (the transmission by Alice and
the malicious activity of Eve) are performed in discrete time
slots 1, 2, . . . ,∞ (Figure 1). At each time slot, while Eve is
not detected and, so, not eliminated from the game Eve can
choose between eavesdropping and jamming modes (respec-
tively denoted by E and J ). If jamming mode is selected, then
she applies jamming power allocation J J . Alice can choose
between two signals to transmit, P E and P J (in other words,
between two actions denoted by E and J that are the best
responses to the eavesdropping and jamming modes of Eve,
respectively). If Eve is detected and, so, eliminated from the
game, Alice could safely switch to employing the optimal
signal for transmission when there are no malicious threats,
i.e., P0 = argmax

P
u(P, 0). Let ū := u(P0, 0). If Eve is not

detected then the game moves to the next time slot and is played
recursively with discount factor δ. This δ can be interpreted as
a measure of urgency in communications: δ = 0 corresponds to
the highest urgency and means that transmission has to be per-
formed during the current time slot, not later, while increasing
δ means that losing a transmission time slot can be more easily
compensated in the following time slots. For the sake of brevity,
we assume that in both transmission modes the detection prob-
ability is the same and is equal to 1 − γ . This assumption is
motivated by our basic example that Alice in both modes does
not reduce the signal, but just reallocates it between channels.
So, in general Alice’s action does not influence the ability of
the IDS to detect intrusion.

This game can be considered as a two-state stochastic game
as shown in Fig. 2. State 1 represents the malicious state in
which Alice is vulnerable to an attack by Eve, while state 2
represents the state in which Eve is detected and is not a threat
to Alice anymore. The matrix notation used for each state i is
such that each entry corresponds to an action pair (E, J ) of
Alice and Eve. The value in the upper left corner of each entry is
the instantaneous payoff (current transmission rate) to Alice in
this zero-sum stochastic game, while the lower diagonal gives
the probability distribution over the future states. For example,
in state 1 if both Alice and Eve use their action E , then the
instantaneous payoff to Alice is uSC (PE) and the next state is
state 1. On the other hand, if Alice and Eve choose the action
pair (E, J ), the payoff is u(PE, JJ) and the next state is state 1
or state 2 with probabilities γ and 1 − γ , respectively. Note that
the payoff at the next epoch is discounted with discount rate δ.

Fig. 2. State transitions and instantaneous payoffs of the stochastic game.

We denote the game played in state 1 as �E J and in state 2 as
�E N D . However, since in state 2 the game ends and Alice can
continuously transmit with rate ū, the total discounted payoff
in state 2 is equal to (1 + δ + δ2 + · · · )ū = ū

1−δ
. Hence from

now on we will only consider the malicious state, and using
the notation in [37, Chapter V.3] and [38, Part II] on page II-71
equation (8), we will denote the stochastic game �E J as given
below.

�E J =

E J

E
⎛
⎜⎜⎜⎜⎜⎝

uSC
(

P E
)+ δ�E J u

(
P E , J J

)+ γ δ�E J

+(1 − γ )δ ū
1−δ

uSC
(

P J
)+ δ�E J u

(
P J , J J

)+ γ δ�E J

+(1 − γ )δ ū
1−δ

⎞
⎟⎟⎟⎟⎟⎠J

.

We are going to solve this game in stationary strategies, i.e.,
the strategies that are independent of history and current time.
Since this game is discounted, it has an equilibrium in stationary
strategies, and its solution is given as a solution to the Shapley
(-Bellmann) equation [37, Chapter V.3]:

v = val

(
νE + δv νE J + γ δv
νJ + δv νJ J + γ δv

)

= max
x

min
y

(
xE

xJ

)T (
νE + δv νE J + γ δv
νJ + δv νJ J + γ δv

)(
yE

yJ

)
, (1)

where v = val(�E J ) is the value of the game, x = (xE , xJ ) is
the stationary (mixed) strategy of Alice assigning the proba-
bilities xE and xJ to using actions E and J , y = (yE , yJ ) is
the stationary (mixed) strategy of Eve assigning the probabil-
ities yE and yJ to using actions E and J , respectively (so,
xE + xJ = 1 and yE + yJ = 1) and1

νE := uSC

(
P E
)

and νJ := uSC

(
P J
)

,

νE J := u
(

P E , J J
)

+ (1 − γ )
δū

1 − δ
,

νJ J := u
(

P J , J J
)

+ (1 − γ )
δū

1 − δ
. (2)

1Note that a more complete notation for these ν would be νE E , νE J , νJ E
and νJ J , which takes into account all pure strategies applied by the players.
However, this notation makes the formulas too bulky for a two-column format.
This is the reason why we have indexed only Alice’s action (the first player)
and active action of Eve (the second player).
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Since the game is zero-sum, maxx min y coincides with miny
maxx in (1).

We assume that P E �= P J . Then, by the definitions of P E

and P J the following inequalities hold:

νE > νJ and νJ J > νE J . (3)

Note that, by (2), νE
1−δ

, νJ
1−δ

, νE J
1−δγ

and νJ J
1−δγ

are the expected
payoffs to Alice if the rivals employ stationary strategy pairs
(E, E), (J, E), (E, J ) and (J, J ), respectively.

In spite of the fact that the maximin equation (1) is implicit
in v, it is possible to solve it explicitly and to evaluate the
stationary equilibrium strategies in closed form.

Theorem 1: The game �E J has a unique stationary equi-
librium strategy pair (x, y) = ((x, 1 − x), (y, 1 − y)) and the
value of the game, v, is given as follows:

(a) if the expected payoff to Alice for stationary strategy pair
(E, E) is not greater than for (E, J ), i.e.

νE

1 − δ
≤ νE J

1 − δγ
, (4)

then (x, y) = (E, E) (so, x = y = 1) and v = νE
1−δ

;
(b) if the expected payoff to Alice for stationary strategy pair

(J, J ) is not greater than for (J, E), i.e.

νJ J

1 − δγ
≤ νJ

1 − δ
, (5)

then (x, y) = (J, J ) (so, x = y = 0) and v = νJ J
1−γ δ

;
(c) if conditions of (a) and (b) do not hold, i.e.

νE J

1 − δγ
<

νE

1 − δ
and

νJ

1 − δ
<

νJ J

1 − δγ
, (6)

then a mixed stationary equilibrium arises, namely,

x = X E J := (1 − δ)νJ J − (1 − δγ )νJ

(1 − δ)(νJ J − νE J ) + (1 − γ δ)(νE − νJ )
,

y = YE J := νJ J − νE J

νJ J − νE J + νE − νJ
,

v = VE J := νJ J νE − νE J νJ

(1 − δ)(νJ J − νE J ) + (1 − γ δ)(νE − νJ )
.

(7)

It is quite interesting to note that by (2) and (7), the optimal
probability, x , for Alice to communicate in eavesdropping mode
is continuous in the probability, γ , of not detecting Eve, and the
discount factor δ. While the optimal probability, y, for Eve to
eavesdrop is piecewise constant in these parameters. Of course,
the boundary of the domains, where the corresponding equilib-
ria are applied, depends on γ and δ continuously. So, Alice is
more flexible in her behavior while Eve is more straightforward.
Figure 3 illustrates where domains of using pure and mixed
equilibria are located.

Proof: By (3) only (E, E) and (J, J ) can be pure equilib-
ria. Also, (E, E) is an equilibrium if and only if v = νE + δv
and νE + δv ≤ νE J + γ δv, and (a) follows. (J, J ) is an equilib-
rium if and only if v = νJ J + γ δv and νJ + δv ≥ νJ J + γ δv,
and (b) follows.

Fig. 3. Domains of using pure and mixed equilibria for uE = 0.8, u J = 0.8,
uE J = 0.3, u J J = 0.6 and ū = 1.1. Here (J, J ) and (E, E) are pure equilib-
ria, while E J is an abbreviation for the mixed equilibrium strategy, which is
constructed by randomizing pure strategies E and J .

If conditions of (a) and (b) do not hold then equilibrium
has to be found in mixed strategies (so, 0 < x, y < 1). For a
2 × 2 matrix game such equilibrium strategies are the ones that
equalize the payoffs, i.e.

(νE + δv)y + (νE J + γ δv)(1 − y) = v,

(νJ + δv)y + (νJ J + γ δv)(1 − y) = v,

(νE + δv)x + (νJ + δv)(1 − x) = v,

(νE J + γ δv)x + (νJ J + γ δv)(1 − x) = v. (8)

Solving these equations for x , y and v implies (7). By (3),
0 < y < 1. While the condition that 0 < x < 1 is equivalent
to conditions (6), and the result follows. �

IV. EXTENDED GAME

In this section, we consider an extension of the model of
the previous section in which Alice can also try to trap Eve by
employing an extra mode, namely, a silent mode. Thus, under-
standing that the communication can be corrupted motivates
Alice to provoke Eve into jamming mode to detect her and
remove her from intrusion, and then to switch to the most effi-
cient way of communication. To study this problem we extend
our stochastic game by allowing Alice to use an extra action
denoted by S when she is in a silent or quiet mode, and not
transmitting signals to Bob, in order to increase the probability
that the IDS detects Eve. By using this action, Alice may lose
time due to the delay in transmitting signals to Bob. However,
Alice can benefit from the earlier detection of Eve and hence
earlier resumption of the more efficient regime of transmission.
If Alice uses such a strategy and if Eve eavesdrops, then Eve is
not detected, and thus, the game is repeated again in the next
time slot with discount factor δ (Figure 4). If Eve jams she can
be detected with probability 1 − γS > 1 − γ (and not detected
with probability γS < γ ), so in the silent mode the probabil-
ity of Eve’s detection by the IDS is greater than in one of the
other two transmission modes. This scenario can be described
by a stochastic game �E J S with one (malicious) state (i.e. when
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Fig. 4. Relationships between Alice, Bob and Eve in the extended stochastic
game.

Alice is under malicious threat from Eve) using a matrix form
as follows:

�EJS =

E J

E
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uSC (P E ) + δ� u(P E , J J ) + γ δ�

+(1 − γ )(δ + δ2 + · · · )ū
uSC (P J ) + δ� u(P J , J J ) + γ δ�

+(1 − γ )(δ + δ2 + · · · )ū
δ� γSδ�

+(1 − γS)(δ + δ2 + · · · )ū

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J

S

.

Again we are going to solve this game in stationary strategies
using the Shapley (-Bellmann) equation [37]:

v = max
x

min
y

⎛
⎝xE

xJ

xS

⎞
⎠

T
⎛
⎜⎜⎝

νE + δv νE J + γ δv

νJ + δv νJ J + γ δv

δv νS + γSδv

⎞
⎟⎟⎠
(

yE

yJ

)
, (9)

where νS = (1 − γS)
δū

1−δ
, v = val(�) is the value of the game,

x = (xE , xJ , xS) is the stationary (mixed) strategy of Alice
assigning probabilities xE , xJ and xS to employ strategies E ,
J and S respectively, and xE + xJ + xS = 1.

To solve this game we introduce two auxiliary stochastic
games, �E S and �J S . �E S is the 2 × 2 sub-game of the 3 × 2
game �E J S with two strategies of Alice, E and S. �J S is also
the 2 × 2 sub-game of the 3 × 2 game �, with two strategies of
Alice, J and S. Similar to the proof of Theorem 1 we can show
the following result.

Theorem 2: The sub-game �DS , where D = E or D = J ,
has the unique stationary equilibrium strategy pair (x, y) =
((x, 1 − x), (y, 1 − y)) and the value of the game is v given
as follows:

(a) if the expected payoff to Alice for stationary strategy pair
(D, E) is not greater than for (D, J ), i.e.

νD

1 − δ
≤ νD J

1 − δγ
, (10)

then (x, y) = (D, E) and v = νD
1−δ

;

(b) if the expected payoff to Alice for stationary strategy pair
(D, J ) is not greater than for (D, E) and is not less than
for (S, J ), i.e.

νD J

1 − δγ
≤ νD

1 − δ
and

νS

1 − δγS
≤ νD J

1 − δγ
, (11)

then (x, y) = (D, J ) and v = νD J
1−γ δ

;
(c) if the conditions of (a) and (b) do not hold, i.e.

νD J

1 − δγ
≤ νD

1 − δ
and

νD J

1 − δγ
<

νS

1 − δγS
, (12)

then an equilibrium in mixed strategies arises, namely,
x = X DS, y = YDS and v = VDS , where y = yDS is the
unique root in (0, 1) of the quadratic equation: FD(y) =
a2 y2+a1 y+a0=0, with a2 := (νD(1−γS) + νS(1−γ )

−νD J (1−γS))δ, a1 := νD J (1+δ(1−2γS))−νD(1−δγS)

− νS(1+δ(1−2γ )), a0 := νS(1−γ δ)−νD J (1−γSδ), and

VDS := νD J (1 − yDS) + νE yDS

1 − δ(γ + (1 − γ )yDS
and X DS := 1 − δ

νD
VDS .

(13)

Note that, since FD(1) = −(1 − δ)νE < 0, FD(0) =
a0 > 0 by (12), and a2 > 0 by (12) such a y exists, and it
is unique.

Theorem 3: The game �E J S has the unique stationary equi-
librium strategies (x, y) = ((xE , xJ , xS), (y, 1 − y)) and the
value of the game is v given as follows:

(a) if the expected payoff to Alice for stationary strategies
(E, E) is not greater than for (E, J ), i.e.

νE

1 − δ
≤ νE J

1 − δγ
, (14)

then (x, y) = (E, E) and v = νE
1−δ

;
(b) if the expected payoff to Alice for stationary strategies

(J, J ) is not greater than for (J, E), and is not less than
for (S, J ), i.e.

νJ J

1 − γ δ
≤ νJ

1 − δ
and

νS

1 − δγS
≤ νJ J

1 − δγ
, (15)

then (x, y) = (J, J ) and v = νJ J
1−γ δ

;
(c1) if

νE J

1 − δγ
<

νE

1 − δ
and νJ <

1 − δ

1 − γ δ
νJ J , (16)

and

L S(YE J , VE J ) ≤ VE J , (17)

where L S(y, v) := δvy + (νS + δγSv)(1 − y), then
(x, y) = ((X E J , 1 − X E J , 0), (YE J , 1 − YE J )) and
the value of the game v = VE J ;

(c2) if (16) holds and (17) does not hold, then (x, y) =
((X E S, 0, 1 − X E S), (YE S, 1 − YE S)), and the value
of the game is v = VE S ;

(d1) if

νE J

1 − δγ
<

νE

1 − δ
, νJ >

1 − δ

1 − γ δ
νJ J and

1 − δγS

1 − δγ
νJ J ≤ νS

(18)
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Fig. 5. Domains of using pure and mixed equilibria for uE = 1.3, u J = 0.8,
uE J = 0.3, u J J = 0.5, ū = 5 and γ = 0.8. Here (J, J ) and (E, E) are pure
equilibria, while E J , E S and J S are abbreviations for the mixed equilibrium
strategies constructed by randomizing the corresponding pure strategies.

and

L S(YE J , VE J ) ≥ VE J , (19)

then (x, y) = ((X E S, 0, 1 − X E S), (YE S, 1 − YE S))

and the value of the game v = VE S ;
(d2) if (18) holds and (19) does not hold, then (x, y) =

((0, X J S, 1 − X J S), (YJ S, 1 − YJ S)) and the value
of the game v = VJ S .

Proof: By (3) only (E, E), (J, J ) and (S, J ) can be pure
equilibria. Also, (E, E) is an equilibrium if and only if v =
νE + δv and νE + δv ≤ νE J + γ δv, and (a) follows. (J, J ) is
an equilibrium if and only if v = νJ J + γ δv and νJ + δv ≥
νJ J + γ δv ≥ νS + γSδv, and (b) follows.

Now we prove that (S, J ) cannot be a pure equilib-
rium. Assume that (S, J ) is an equilibrium. Then v = νS +
γSδv, so v = νS/(1 − γSδ) and δv ≥ νS + γSδv ≥ νJ J + γ δ.
Substituting v into the first of these inequalities implies δ(1 −
γS) ≥ 1 − γSδ. This contradiction yields that (S, J ) cannot be
a pure equilibrium.

Suppose the conditions of (a) and (b) do not hold. Then an
equilibrium exists in mixed strategies. The value of the game v
is a solution to the equation v = w(v), where w(v) for a fixed v
is a solution of the following LP (linear programming) problem:

min w(v) :
L E (y, v) := (νE + δv)y + (νE J + γ δv)(1 − y) ≤ w(v),

L J (y, v) := (νJ + δv)y + (νJ J + γ δv)(1 − y) ≤ w(v),

L S(y, v) := δvy + (νS + δγSv)(1 − y) ≤ w(v),

0 ≤ y ≤ 1.

(20)

Let (16) hold. Then, by Theorem 1(c), there is a mixed equi-
librium in the game �E J . Thus, L E is increasing and L J is
decreasing in y and these lines intersect at the point y = YE J .
Further, by (20) (Figure 6), the value of the game is VE J if (17)
holds and it is VE S if (17) does not hold, and thus (c1) and (c2)
follow.

Let (18) hold. Then, by Theorem 1(b), (J, J ) is a pure equi-
librium in the game �E J . Then L E and L J are increasing in

Fig. 6. Evaluation of Eve’s equilibrium strategy and the value of the game.
Case (c) of Theorem 3.

Fig. 7. Evaluation of Eve’s equilibrium strategy and the value of the game.
Case (d) of Theorem 3.

y, and these lines intersect at the point y = YE J . So, by (20)
(Figure 7), the value of the game is VE S if (19) holds and it is
VJ S if (19) does not hold, and thus (d1) and (d2) follow. �

It is quite natural that there is no pure equilibrium that
includes Alice’s silent action as a component. Since the best
response by Eve to such a strategy of Alice is to eavesdrop,
Alice can never deliver any information to Bob without being
eavesdropped upon and Eve is never detected. To increase the
payoff by means of a new possibility made available by the
silent mode, Alice has to risk losing either secrecy or reliabil-
ity and jointly use silence and one of the transmission modes to
provoke Eve to jam. Figure 5 illustrates how domains of using
pure and mixed equilibria are located.

V. NUMERICAL ILLUSTRATION

We first consider the basic game in which Alice can only
transmit. We investigate through numerical examples how
Alice’s optimal probability to transmit in eavesdropping mode,
xE , Eve’s optimal eavesdropping probability, yE , and the value
of the game depend on the probability, γ , that Eve is not
detected in the jamming mode and the discount factor δ.
Assume νE = 1.3, νJ = 0.5, νE J = 0.1, νJ J = 0.5 and ū = 3
(Figure 8). The optimal probability, xE , of Alice to transmit
in eavesdropping mode is continuous and decreasing in the
probability γ . This is quite reasonable since decreasing the
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Fig. 8. (a) The optimal probability xE for Alice to communicate in eavesdropping mode, (b) the optimal probability yE for Eve to eavesdrop, and (c) the value of
the game as functions of the probability γ and discount factor δ in the game �E J .

Fig. 9. The optimal probability for Alice to communicate: (a) in eavesdropping mode, (b) in jamming mode, and (c) in silent mode.

Fig. 10. (a) The optimal probability for Eve to eavesdrop, (b) the value of the game �, (c) the difference between the values of the games � and �E J .

chance of not being detected makes jamming mode safer for
Eve; thus, Eve focuses on reducing reliability of the commu-
nication between Alice and Bob. This forces Alice to focus
more on reliable rather than secret communications. That is
why Alice increases the probability of transmitting in jamming
mode. Eve’s probability of eavesdropping, yE , is piecewise
constant and is a decreasing function of the probability γ . The
value of the game is continuously decreasing in γ since a larger
probability that Eve is not detected allows her to perform her
malicious activity for longer periods and to cause greater dam-
age to Alice’s communication with Bob. An increasing discount
factor δ implies reduction in the urgency of communication,
and it leads to switching to more secure communication. This

in turn increases the probability of using eavesdropping mode
by Alice and Eve, and thus, increases the value of the game.

Let νE = 1.3, νJ = 0.8, νE J = 0.3, νJ J = 0.5, ū = 5
and γ = 0.8. For the game �, where Alice has three
options, Figures 9 and 10 show that the equilibrium strategy
(xE , xJ , xS) of Alice, the optimal probability of eavesdropping,
yE , by Eve and the value, v, of the game depend on the prob-
ability γS of jamming being undetected in silent mode and the
discount factor δ. It is interesting that the optimal probabilities
xE , xJ , xS and yE are piece-wise continuous functions of γS

and δ, while the value of the game is continuous and monotonic.
Jumps in xE , xJ , xS and yE can take place on the boundaries
of domains (Figure 5) where one type of equilibrium switches
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to the other. Figure 10(c) illustrates how the silent mode incor-
porated in Alice’s strategy can increase her payoff depending
on the urgency of transmission (discount factor δ) and parame-
ters of the IDS (the probability of not detecting γS). To increase
her payoff by using silent mode Alice has to risk losing either
secrecy or reliability jointly using silent and one of the trans-
mission modes. So, improvement takes place in the domains
E S and J S, while in the domains E J , (E, E) and (J, J )

(Figure 5) the value of the game coincides with the one in which
the silent mode is not employed.

VI. CONCLUSIONS

In this paper, we have introduced and analyzed a new
paradigm that can be useful for secret and reliable communica-
tion, namely, incorporating in the transmission protocol a time
slot dealing only with detection of a malicious threat to improve
the secrecy and reliability of communication. To deal with this
problem two stochastic games have been proposed and solved
explicitly. The first one extends the static game between a user
and a sophisticated adversary who can execute two threats: jam-
ming and eavesdropping ([10] and [11]) to a dynamic stochastic
game, in which the adversary in jamming mode can be detected
by the IDS. The second game extends the first by allowing the
user to also implement a silent mode. Explicit solution of these
stochastic games demonstrates that such a silent mode increases
the secrecy and reliability of communication, and the resulting
randomized strategy specifies the frequency of using the silent
mode.
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