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I. ABSTRACT

Recent changes in policy regarding the opportunistic use of
licensed radio spectrum have paved the way for new innovative
technologies like cognitive radio (CR). This technology puts
tight demands on systems built to sense spectrum occupancy.
Any strategy employed for opportunistic spectrum usage has
to consider the tradeoffs between time spent searching for
empty channels and time spent using those empty channels.
In most cases the spectrum sensing that is employed by a CR
system starts with no prior information about the occupancy of
the channels it intends to use. A classifier can be run before
the CRs attempt transmission to provide the CRs’ spectrum
sensing sub-systems with a set of occupancy probability cat-
egories for some of the channels. By providing priors it may
be possible for the CR to reach a transmission strategy in a
shorter time frame.

We propose a novel method of addressing this lack of prior
knowledge by employing an efficient strategy that classifies
some of the channels the CR intends to use within a fixed
time limit. Our classification algorithm is based on multiple
sequential probability ratio tests (multi-SPRT) and a heuris-
tic allocation strategy for measurements that considers the
completion time of each multi-SPRT. We will show that this
strategy will achieve a bounded error by prioritizing channels
that give consistent measurement results. We also compare the
performance of the proposed system to simpler systems that
do not require as many computations.

II. INTRODUCTION

Radio spectrum is a limited resource that is currently under
heavy contention. Regulatory bodies like the FCC take on
the daunting task of fairly distributing this resource among
the many spectrum hungry users. Recent changes in policy
regarding the opportunistic use of licensed spectrum has paved
the way for new innovative technologies like cognitive radio
[1].

1The authors would like to thank CACI Technologies for funding in part
this research.

This adaptive radio design allows secondary users (SU) to
use spectrum slotted for a different purpose if the primary
user (PU) is not currently using it. A key element of this
technology is sensing whether the primary user is present or
not. This sensing process typically requires a very extensive
sensing period because of the requirement that the interference
that the PU sees be minimized (although there have been recent
proposals to mitigate this requirement, see [2]). If the sensing
takes too long, the utility of secondary usage of the spectrum
goes down rapidly. When a sensing system takes too long to
converge on a strategy, it may miss spectrum opportunities or
fail to meet transmission service quality requirements. Since
the radio is adaptive, an on-line sensing plan with short
convergence times is required to optimally utilize spectrum.
This area of research is very active, and there are several
strategies proposed for sensing the environment. Techniques
such as C-SPRT, and finite horizon dynamic programming are
used to identify optimal stopping times and balance points
between exploration and exploitation. Many of these strategies
however assume a prior distribution that is either unknown
or uninformed. All of these strategies could benefit from any
amount of a priori information about the occupancy of the
channels they intend to use.

Spectrum classification can help reduce convergence times
and facilitate efficient spectrum usage. Since data usage pat-
terns are coupled with the daily routine of users, classification
based on geography and time will be of great utility. However
practical approaches to spectrum classification are not very
well explored. Classification can possibly be done by two
different approaches, an infrastructure approach and a mobile
approach.

In the infrastructure case measurement opportunities are
infinite, however mobility is not possible. In the mobile case,
we are not tied to fixed geographic locations, however because
we are mobile we have a limit on the amount of measurement
resources per geographic location. In this discussion, we focus
on the mobile case. The mobile measurement case can arise
from regulatory bodies doing characterization sweeps across
geographic areas, to asses usage and possibly to coordinate
SUs via a control channel.
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The proposed technique can be used as part of a distributed
or hybrid interference temperature measurements like those
described in [3]. It could also be done by mobile SUs,
in an attempt to build a personal geographic map of the
occupancy for the SU. This map can be consulted before the
initial spectrum scan that precedes a transmission. This will
speed up the initial convergence and may identify recurrent
spectral artifacts that need to be avoided. If the latter is
done in some form of a handset, the measurement resources
might be very limited because of battery conservation policies,
or other resource constraints. Such maps will naturally be
geographically limited, however techniques such as kriging
spatial interpolation (as described in [4]) can be used to extend
the map’s utility.

In the following work, we propose a novel strategy for
distributing a limited number of measurements amongst a set
of channels with unknown occupancy. Our goal is to classify as
many channels as we can with the limited amount of resources.
We will achieve this goal by minimizing a cost function that
depends on the expected number of measurements needed to
satisfy an error bound. The classification will partition a set
of channels into subsets with similar probability of occupancy.
This classification can be used to adjust future sensing policies,
perhaps by starting with channels that are in the set of low
occupancy channels first.

The rest of the paper is laid out as follows. In Section III
we survey some related approaches and describe the model
we employ in Section IV. Simulation results and performance
analysis is done in V. Finally we examine future work and
conclusions in VI.

III. RELATED WORKS

The broad category of spectrum sensing for CRs is actually
quite well explored. In [5], Yucek charts various strategies
for sensing spectrum ranging from simple energy detection to
multi-dimensional techniques. The key distinction between our
work and many of the methods suggested is that their primary
goal is to maximize throughput by efficiently finding spectral
holes. In almost every case their primary metric is maximum
throughput under different constraints, e.g. fair access to all
users. In our proposed method, on the other hand, we will
explore different performance metrics for an entirely different
class of problems, that of classification of channels.

In [6], Lai et al. propose an adaptive allocation model for
sensing that employs solutions to multi-armed bandit problems.
In the single user case, they use a network similar to the
proposed model of our work and consider a time slotted
collection of channels. At each time slot, the CR must first
listen to the channel. If the channel is empty, the CR will
transmit. If not the CR will update the channel’s occupancy
model to avoid picking this channel again. At each step the
authors are computing the expected future gains based on the
learned history. Each choice is then made to maximize the
expected throughput.

Our approach has a different utility function that aims to
limit the amount of time spent sensing any individual channel.
In the bandit formulation if a channel is unoccupied throughout

the duration of the sensing interval, this channel is always
the best choice. However in our problem, such a channel is
only of limited utility. For an unoccupied channel, we require
only a small number of samples to confirm that it is indeed
unoccupied. Once we have determined that it is empty with a
sufficiently small probability of error, this channel is decided
and thus sampling it more is of no utility.

Many techniques fall back on the classical Neyman-Pearson
methods of error analysis, however some (e.g. Xin and Lai in
[7]), employ sequential testing techniques. Here the authors
focus on a similar class of problem that minimizes a cost
function that depends on the expected sequence length and
the error probability. Their model comes from noisy power
observations where the signal is required to be present during
the entire observation period. We do not assume a signal
model that requires a constant signal, instead we expect that
an underlying detector can hand us an instantaneous binary
decision as to whether the channel is occupied or not. Our
channels may be partially occupied with occupancy probability
pn.

IV. PROPOSED MODEL

Our model assumes a set of N independent channels,
indexed by n ∈ {1, ..., N}. Channel n is occupied with prob-
ability pn. We assume that each pn is drawn from a uniform
distribution on [0, 1]. If we consider the set PN = {pn},
the proposed system will classify a subset of N channels by
distributing a limited number of measurements L among the N
channels. Each measurement of a channel xn(.) is considered
to be a Bernoulli random variable B(pn) with 1 indicating
occupied, and 0 indicating free. The argument of xn(.) is the
current sample index for the respective channel.

Time will be normalized by samples and indexed by the
global time index j ∈ {1, 2, ...L}. Each channel n has a sample
index, mn(j) ∈ {1, ...}, the number of samples received at
time j. Our approach will selectively distribute samples among
the channels by building a selection function n̂(j), which will
be defined in Section IV-B. mn(j) is then given as:

mn(j + 1) =

{
mn(j) + 1 : if n = n̂(j),

mn(j) : otherwise.
(1)

Due to the constrained nature of the problem, not all channels
will complete a classification. We index the stopping time
for channels which complete the classification as Mn and the
largest sample index for channels which do not complete as
M ′

n. Thus we have L =
∑

classified Mn +
∑

unclassified M
′
n.

A driving observation to this method is that as the parameter
of the Bernoulli random variable pn gets closer to the edges
of the [0, 1] parameter space, the variance of the random
variable decreases, see Figure 1. This drop in variance should
be coupled with an increase in the consistency of samples.
Channels that have more consistent measurements will take
fewer samples to characterize while maintaining a bound
on error. The proposed system will prioritize these channels
over channels that are not consistent. This preference for
consistency will be reflected in our performance metrics.
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Fig. 1. Variance of xn(.) as a function of pn. PL and PR are extrinsic design
choices. The position of the boundaries trades the efficacy of the search and
the precision of the answer.

A. Single Channel Decision

For each n, we formulate our hypothesis to re-
flect our preference for consistent measurements. In Fig-
ure 1 we have partitioned the parameter space into 3
sets,[0, PL], (PL, PR), [PR, 1]. Our hypothesis can be stated as:

HC,n : pn ∈ [0, PL] or pn ∈ [PR, 1] (2)
HI,n : pn ∈ (PL, PR)

HC,n is a claim that channel n is consistent. In choosing
PL, PR we must balance the performance of the system, as
discussed in Section V-B, against precision of the answer
returned. The width of the closed subsets directly effects the
efficiency of the search. PL, PR have no n dependence as they
are global parameters.

For this set of hypotheses we need a test that will satisfy a
bound on β = P{Declare HC,n|HI,n is true} while making a
decision with the fewest samples. In [8], it is shown that the
SPRT satisfies these criteria.

Because the hypotheses given in (2) partition the parameter
space into three distinct regions we will use multiple SPRTs
and a combining rule to evaluate these hypotheses. If we
consider only the “left” side of (2) our hypothesis simplifies
to:

HL,n : pn ≤ PL, (3)
HL′,n : pn > PL.

The SPRT was derived to address exactly this form of compos-
ite hypotheses. To build the test, we identify an indifference
region about PL, a region in which we are indifferent to
errors in the declaration of the test. For simplicity of the
formulation we can choose a small δ about PL and then make
the assignments:

θ1 = PL + δ, (4)
θ0 = PL − δ.

In [9] it is shown that the test that decides simple hypothesis

of the form:

H0 : pn = θ0, (5)
H1 : pn = θ1,

can be used to decide (3). The likelihood ratio can therefore
be written as:

Λ(xn(mn(j))) =
f(xn(1), θ1)...f(xn(mn(j)), θ1)

f(xn(1), θ0)...f(xn(1), θ0)
, (6)

where Λ(xn(mn(j))) is a function of the sample index, and
f(xn(mn(j)), θ1) is the probability of the mn(j)

th sample
takes on the value xn(mn(j)) when the parameter equals θ1.
It is compared to two thresholds A and B, which are chosen to
enforce a bound on β. The test ends when one of the thresholds
is crossed. The decision rule for this SPRT is then given as:

ϕL(xn(Mn)) =

{
1 : DeclareHL,n ⇔ Λ(xn(Mn)) < A,

0 : DeclareHL′,n ⇔ B < Λ(xn(Mn)),
(7)

Similarly we can derive a test for the “right” side of (2) which
will decide between the hypotheses:

HR,n : pn ≥ PR, (8)
HR′,n : pn < PR,

and produce an analogous decision rule ϕR(xn(Mn)). A full
derivation is given in [10].

Utilizing these two tests we can build multi-SPRT system
that decides between HC,n and HI,n by using a combining
rule of the form:

φC(xn(Mn)) = ϕR(xn(Mn)) + ϕL(xn(Mn)). (9)

φC(xn(Mn)) serves as an indicator for the declaration of
HC,n. The function does not require a mod2 operation as the
declaration of HL,n and HR,n are mutually exclusive. Since
the sufficient statistic is given as

dn(j) =

Mn∑
mn(j)=1

xn(mn(j)), (10)

we can use φC(dn(j)), a similar indicator based on the
sufficient statistic, to compute β for this test. Because the test
is sequential, we can define an operator characteristic curve
(OC curve) as

L(pn) = P (declare HC,n)pn
=

∫
φC(dn(Mn)) dFpn

(dn(Mn)),

(11)
where dFpn

(dn(Mn)) is a measure due to the distribution
on dn(Mn) with parameter pn. L(pn) is the probability that
sequential test will terminate with a decision of HC,n if the
samples from channel n have pn as their parameter. We can
then compute β, the probability that this test will miss-classify
a channel n with parameter pn ∈ (PL, PR) as:

β =

∫ PR

PL

L(pn)f(pn)dpn =
1

PR − PL

∫ PR

PL

L(p)dp, (12)

since pn was drawing from a uniform distribution.
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To implement this test one can appeal to (6), however in
[11] it is shown that we can evaluate the test by considering
the sufficient statistic dn(j) as a random walk between two
pairs of threshold lines which are derived from (6), (7), and
their “right” side analogues. In Figure 2, we can see a sample
run of the graphical interpretation. This graph also shows the
regions where φC(xn(Mn)) will make it’s final decision.

Fig. 2. Sample run of the multi-SPRT. The Left boundary lines decide if the
parameter is above or below PL. The right boundary lines do the same for
PR. When the random walk dn(j) crosses into one of the labeled regions,
the test makes that declaration.

B. Multi-Channel Measurement Allocation Strategy
The multi-SPRT of Figure 2 gives us a metric for assess-

ing the proximity to completion, the distance to the nearest
decision making threshold line. We use this metric and a
greedy allocation strategy to decide which channel to allocate
future measurements to. We formulate a cost function for each
channel as:

Cn(mn(j)) =

{
en,mn(j) + (λ ∗mn(j)) : unclassified,
∞ : classified,

(13)
where en,mn(j) is a distance metric which is measured as
minimum samples required to reach a decision from the current
position, see Figure 3. The λ ∗mn(j) is a term that penalizes
oscillations in the en,mn(j) term. Once a channel has been
classified there is no longer any utility in allocating additional
measurements to it, thus we set the cost to infinity to ensure
no further allocations will be made.

To minimize the time spent on any one channel we take
a greedy approach of choosing channels with minimum cost
at each sample allocation. These channels are the closest to a
decision while having taken the fewest measurements to reach
this decision. Our selection function is then given by:

n̂(j) = arg min
n

(Cn(mn(j))). (14)

In many cases this minimum will not be unique, when this
occurs we choose an index randomly according to a uniform
distribution on the set of minimum cost channels.

At j = 0, all channels have the same initial cost which is
the number of samples required to cross the nearest threshold

Fig. 3. en,mn(j) seen graphically. At the current step mn(j) = 30. If the
random walk takes 7 more steps upward, it will make a decision. Since this
is the smallest number of steps required to complete the test en,mn(j) = 7.

line without any changes in direction, i.e., the shortest path
to a decision. Once a channel has received a few samples its
random walk may take a straight path towards a threshold
line, in which case it will reduce the cost by lowering en,m.
The greedy choice will continue to pick this channel until
it reaches a decision or starts raising the cost by changing
direction. The λ is chosen so that when a channel’s random
walk changes direction, it forces the cost to go up, and thus
makes the greedy choice pick a different channel in the next
allocation. Under this strategy channels that reach decisions in
the fewest samples are selected over channels that require long
sequences to characterize. Channels for which the samples are
consistent will have fewer direction changes in their random
walks, and thus be prioritized.

V. SIMULATION RESULTS

The determining factor in the utility of our approach is
the resource regime we have to work with. If the number of
samples is large compared to the number of channels, then
there is no need to be frugal with measurements. The benefits
of running this allocation scheme are grossly out weighed by
it’s computational overhead. However, in a scenario when the
number of channels is greater than the number of samples we
have to allocate, this system will return meaningful answers
while satisfying a bound on the error.

A. Alternative Approaches

For comparison we examine two alternative allocation
schemes. The first scheme is the most simple, which is to di-
vide the measurements we have equally among all the channels
we have to search through, and to compute the classical esti-
mate of the parameter pn. Each channel will get Γ = L

N sam-
ples. The estimate becomes p̂n =

∑Γ
mn(j)=1 xn(mn(j))/Γ.

We place said channel in their respective category based on
the comparison of p̂n to PL, PR. While this approach is very
easy to implement and has minimal computational overhead,
it does not adapt to different resource regimes.
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The second approach we consider is more adaptive. We
begin by allocating some fraction of our samples for an initial
pass. In this initial pass we will sample each channel a fixed
number of times, Ψ, up to our budget of samples. For each
channel that has received at least Ψ samples, we identify
channel that have sufficient agreement between samples, e.g.
if Ψ = 4, we would allow for at most 1 sample that is
different from the others. Channels that satisfy this policy will
be marked as candidates for the second pass, and in this second
pass will again receive Ψ samples. This process repeats until
we run out of samples. When we have run out of samples
(or satisfied some sampling depth limit) the channels that
received samples will have their parameter estimates computed
as p̂n =

∑M ′
n

mn(j)=1 xn(mn(j))/M ′
n, and these estimates will

be used to categorize the channels as before, see algorithm 1.
This approach iteratively builds a tree of allocated samples.

Channels with a high degree of consistency between samples
have a low variance, and thus a shorter expected sequence
length. By allocating more samples to consistent channels the
error in the estimator p̂n is lowered. This approach can be seen
as an approximation to the proposed method, with a lower
computation overhead.

#First Pass;

reserve fixed fraction of samples;
while reserve not empty do

allocate Ψ samples to channel;
end
#All Subsequent Passes;

while still have samples do
#identify consistent subset;
forall the channels that received samples do

if consistent then
keep

else
discard

end
end
foreach consistent channel do

allocate Ψ samples to channel;
end

end
#Classify;

forall the channels that received samples do
compute p̂n ;
switch p̂n do

case < PL declare HC,n;
case > PR declare HC,n;
otherwise

declare HI,n

end
endsw

end
Algorithm 1: Tree Scheme for measurement allocation

B. Performance

To compare performance we choose a fixed L = 1000
and then consider an increasing N . As the resource regime
gets progressively worse, the utility of our approach will
become apparent. We will consider two performance metrics
that demonstrate the trade off we make when employing
this approach. The first is the number of consistent channels
discovered as an increasing function N , that is channels
declared HC,n. This metric is simple to quantify, but somewhat
misleading when used to measure performance. To compute
the metric, we first define an indicator function on the results
of a system that identifies which hypothesis was declared for
each channel:

IC(n) =

{
1 : if HC,n was declared,
0 : otherwise.

(15)

For the case of multi-SPRT (15) is the same as (9). We can
then compute the metric as

∑
n IC(n). As a first look consider

Figure 4. In Figure 4 we can see for Γ < 5 the simple scheme
starts to break down. The simple scheme does not have enough
samples to make meaningful estimates for each channel, and
is thus is declaring more channels to be consistent than there
actually are. Because the results of the simple scheme skew the
scale of the graph, consider Figure 5 where we only compare
the greedy-SPRT and tree building approaches. Figure 5 shows
that the tree and greedy-SPRT approaches are very close in
terms of discovery.

Fig. 4. Number of channels found for all 3 schemes as functions of N . As
N increases, Γ goes from 10 → 1. The number of consistent channels is
defined by PL, PR. In this simulation it’s ≈ .40N .

For the second metric we like to consider the probability
that the system misclassifies a channel as consistent. Since
we claim that channels with low probability of occupancy
(consistently empty channels) are fit for opportunistic use, it
is very important that we do not mislabel partially occupied
channels as empty. We also deem channels that are consistently
full as unusable, however if they are mislabeled, we have
missed a spectral opportunity.

From Section IV-A we noted that test for each channel n
misclassifies with probability β. The proposed system will
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Fig. 5. Number of channels found for greedy-SPRT vs tree schemes as
functions of N . The tree scheme uses a Ψ = 4. The greedy-SPRT scheme
uses a lambda of 0.3.

combine several of these decisions into its final result. Since
each channel is evaluated independently of every other chan-
nel, the probability of a missed classification is geometric
with parameter β. For comparison we can directly compute
the resulting probability of misclassification from the system
outputs. By comparing the actual channel parameters pn to
their classifications we get the function:

IM (n) =

{
1 : if HC,n was declared but pn ∈ (PL, PR),

0 : otherwise.
(16)

Then the system misclassification rate is computed as

βsystem =

∑
n IM (n)∑
n IC(n)

. (17)

We examine the βsystem as a function of N in Figure 6.

Fig. 6. βsystem for all 3 schemes as functions of N . The error of the simple
scheme approaches 0.6 asN grows large. When the system has so few samples
per channel, it labels everything as consistent.

In this graph we see what goes wrong with the simple
scheme, it makes too many errors. As the ratio L

N → 1, the

greedy-SPRT approach maintains a bound on the classification
error. Both the simple and tree approaches see an increase in
misclassifications as N increases. In the simple case this error
grows very large.

VI. CONCLUSION

Any adaptive system can benefit from having a reliable set
of prior probabilities to start from. The proposed adaptive
allocation approach was built to maintain a bound on error
in the low resource regime where the distribution of samples
matters. The approach was designed with the admission that it
may run of out of samples before it classifies every channel,
however for any channel that is classified, a bound on error will
to be satisfied. In the cases where the available resources are
very high, the simple scheme still made a significant number
of classification errors. In contrast the greedy-SPRT kept the
probability of misclassification well below 0.1 for all N .

In our model we assumed that all channels were independent
as this represents a worst case scenario for the channel model.
If we had additional information about correlations between
channels, the system could be modified to incorporate such
information (e.g. it could be used to make a more informed
choice when we have to pick a random index).

The channel occupancy at any given time is a function of
the usage patterns of the PUs (and SUs). In the uninformed
case each user is equally likely to be streaming vs bursting
packets. If at least some of the traffic is streamed, then some of
the discovered pn should be long lived relative to the duration
of measurement interval.

While the system seems to perform well on paper and in
simulation, its key draw backs are its reliance on a uniformly
distributed set of pn and the requirement that the greedy choice
be computed for every sample. In addressing the former we
have started examining the worst case performance under non-
uniform distributions. In hostile environments (environments
where every channel is nearly occupied) the system identifies
the “worst of the worst”, channels which should be avoided
because they have no open time slots.
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